To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop combinatorial tools to study partial rigidity within the class of minimal $\mathcal {S}$-adic subshifts. By leveraging the combinatorial data of well-chosen Kakutani–Rokhlin partitions, we establish a necessary and sufficient condition for partial rigidity. Additionally, we provide an explicit expression to compute the partial rigidity rate and an associated partial rigidity sequence. As applications, we compute the partial rigidity rate for a variety of constant length substitution subshifts, such as the Thue–Morse subshift, where we determine a partial rigidity rate of 2/3. We also exhibit non-rigid substitution subshifts with partial rigidity rates arbitrarily close to 1 and, as a consequence, using products of the aforementioned substitutions, we obtain that any number in $[0, 1]$ is the partial rigidity rate of a system.
This paper deals with the exponential separation of type II, an important concept for random systems of differential equations with delay, introduced in Mierczyński et al. [18]. Two different approaches to its existence are presented. The state space X will be a separable ordered Banach space with $\dim X\geq 2$, dual space $X^{*}$, and positive cone $X^+$ normal and reproducing. In both cases, appropriate cooperativity and irreducibility conditions are assumed to provide a family of generalized Floquet subspaces. If in addition $X^*$ is also separable, one obtains an exponential separation of type II. When this is not the case, but there is an Oseledets decomposition for the continuous semiflow, the same result holds. Detailed examples are given for all the situations, including also a case where the cone is not normal.
We prove that almost every interval exchange transformation, with an associated translation surface of genus $g\geq 2$, can be non-trivially and isometrically embedded in a family of piecewise isometries. In particular, this proves the existence of invariant curves for piecewise isometries, reminiscent of Kolmogorov–Arnold–Moser (KAM) curves for area-preserving maps, which are not unions of circle arcs or line segments.
Geometric parameters in general and curvature in particular play a fundamental role in our understanding of the structure and functioning of real-world networks. Here, the discretisation of the Ricci curvature proposed by Forman is adapted to capture the global influence of the network topology on individual edges of a graph. This is implemented mathematically by assigning communicability distances to edges in the Forman–Ricci definition of curvature. We study analytically both the edge communicability curvature and the global graph curvature and give mathematical characterisations of them. The Forman–Ricci communicability curvature is interpreted ‘physically‘ on the basis of a non-conservative diffusion process taking place on the graph. We then solve analytically a toy model that allows us to understand the fundamental differences between edges with positive and negative Forman–Ricci communicability curvature. We complete the work by analysing three examples of applications of this new graph-theoretic invariant on real-world networks: (i) the network of airport flight connections in the USA, (ii) the neuronal network of the worm Caenorhabditis elegans and (iii) the collaboration network of authors in computational geometry, where we strengthen the many potentials of this new measure for the analysis of complex systems.
Let $K={\mathbb {Q}}(\sqrt {-7})$ and $\mathcal {O}$ the ring of integers in $K$. The prime $2$ splits in $K$, say $2{\mathcal {O}}={\mathfrak {p}}\cdot {\mathfrak {p}}^*$. Let $A$ be an elliptic curve defined over $K$ with complex multiplication by $\mathcal {O}$. Assume that $A$ has good ordinary reduction at both $\mathfrak {p}$ and ${\mathfrak {p}}^*$. Write $K_\infty$ for the field generated by the $2^\infty$–division points of $A$ over $K$ and let ${\mathcal {G}}={\mathrm {Gal}}(K_\infty /K)$. In this paper, by adopting a congruence formula of Yager and De Shalit, we construct the two-variable $2$-adic $L$-function on $\mathcal {G}$. Then by generalizing De Shalit’s local structure theorem to the two-variable setting, we prove a two-variable elliptic analogue of Iwasawa’s theorem on cyclotomic fields. As an application, we prove that every branch of the two-variable measure has Iwasawa $\mu$ invariant zero.
In this paper, we analyse the possible homotopy types of the total space of a principal SU(2)-bundle over a 3-connected 8-dimensional Poincaré duality complex. Along the way, we also classify the 3-connected 11-dimensional complexes E formed from a wedge of S4’s and S7’s by attaching a 11-cell.
We consider the system $\dot {x}=(A+ P(t,\epsilon )) x, x\in \mathbb {R}^{3}, $ where $A, P$ are both three-dimensional skew symmetric matrices, A is a constant matrix with eigenvalues $\pm i\unicode{x3bb} $ and 0, $P(t,\epsilon )$ is $C^{m}(m=0,1)$-smooth in $\epsilon $ and analytic quasi-periodic with respect to t with basic frequencies $\omega =(1,\alpha )$, with $\alpha $ being irrational, and $\epsilon $ is a small parameter. Under some non-resonant conditions about the basic frequencies and the eigenvalues of the constant matrix and without any non-degeneracy condition, it is proved that for many sufficiently small parameters, this system can be reduced to a rotation system. Furthermore, if the basic frequencies satisfy that $ 0\leq \beta (\alpha ) < r,$ where $\beta (\alpha )=\limsup \nolimits _{n\rightarrow \infty } {\ln q_{n+1}}/{q_{n}},$$q_{n}$ is the sequence of denominations of the best rational approximations for $\alpha \in \mathbb {R} \setminus \mathbb {Q},$r is the initial radius of analytic domain, it is proved that for many sufficiently small parameters, this system can be reduced to a constant system.
Conformal image registration has always been an area of interest among modern researchers, particularly in the field of medical imaging. The idea of image registration is not new. In fact, it was coined nearly 100 years ago by the pioneer D’Arcy Wentworth Thompson, who conjectured the idea of image registration among the biological forms. According to him, several images of different species are related by a conformal transformations. Thompson’s examples motivated us to explore his claim using image registration. In this paper, we present a conformal image registration (for the two-dimensional grey scaled images) along with a penalty term. This penalty term, which is based on the Cauchy–Riemann equations, aims to enforce the conformality.
The aim of this article is to extend the scope of the theory of regularity structures in order to deal with a large class of singular stochastic partial differential equations of the form
\begin{equation*}\partial_t u = \mathfrak{L} u+ F(u, \xi),\end{equation*}
where the differential operator $\mathfrak{L}$ fails to be elliptic. This is achieved by interpreting the base space $\mathbb{R}^{d}$ as a non-trivial homogeneous Lie group $\mathbb{G}$ such that the differential operator $\partial_t -\mathfrak{L}$ becomes a translation invariant hypoelliptic operator on $\mathbb{G}$. Prime examples are the kinetic Fokker-Planck operator $\partial_t -\Delta_v - v\cdot \nabla_x$ and heat-type operators associated with sub-Laplacians. As an application of the developed framework, we solve a class of parabolic Anderson type equations
\begin{equation*}\partial_t u = \sum_{i} X^2_i u + u (\xi-c)\end{equation*}
on the compact quotient of an arbitrary Carnot group.
We initiate the study of deformation theory in the context of derived and higher log geometry. After reconceptualizing the ‘exactification’-procedures in ordinary log geometry in terms of Quillen’s approach to the cotangent complex, we construct an “tangent bundle’ over the category of log ring spectra. The fibers recover the categories of modules over the underlying ring spectra, and the resulting cotangent complex functor specializes to log topological André–Quillen homology on each fiber. As applications, we characterize log square-zero extensions and derive a log variant of étale rigidity, applicable to some tamely ramified extensions of ring spectra.
In the article, we investigate Trudinger–Moser type inequalities in presence of logarithmic kernels in dimension N. A sharp threshold, depending on N, is detected for the existence of extremal functions or blow-up, where the domain is the ball or the entire space $\mathbb{R}^N$. We also show that the extremal functions satisfy suitable Euler–Lagrange equations. When the domain is the entire space, such equations can be derived by a N-Laplacian Schrödinger equation strongly coupled with a higher order fractional Poisson’s equation. The results extends [16] to any dimension $N \geq 2$.
Let $\varphi$ be a normal semifinite faithful weight on a von Neumann algebra $A$, let $(\sigma ^\varphi _r)_{r\in {\mathbb R}}$ denote the modular automorphism group of $\varphi$, and let $T\colon A\to A$ be a linear map. We say that $T$ admits an absolute dilation if there exists another von Neumann algebra $M$ equipped with a normal semifinite faithful weight $\psi$, a $w^*$-continuous, unital and weight-preserving $*$-homomorphism $J\colon A\to M$ such that $\sigma ^\psi \circ J=J\circ \sigma ^\varphi$, as well as a weight-preserving $*$-automorphism $U\colon M\to M$ such that $T^k={\mathbb {E}}_JU^kJ$ for all integer $k\geq 0$, where $ {\mathbb {E}}_J\colon M\to A$ is the conditional expectation associated with $J$. Given any locally compact group $G$ and any real valued function $u\in C_b(G)$, we prove that if $u$ induces a unital completely positive Fourier multiplier $M_u\colon VN(G) \to VN(G)$, then $M_u$ admits an absolute dilation. Here, $VN(G)$ is equipped with its Plancherel weight $\varphi _G$. This result had been settled by the first named author in the case when $G$ is unimodular so the salient point in this paper is that $G$ may be nonunimodular, and hence, $\varphi _G$ may not be a trace. The absolute dilation of $M_u$ implies that for any $1\lt p\lt \infty$, the $L^p$-realization of $M_u$ can be dilated into an isometry acting on a noncommutative $L^p$-space. We further prove that if $u$ is valued in $[0,1]$, then the $L^p$-realization of $M_u$ is a Ritt operator with a bounded $H^\infty$-functional calculus.
We investigate the sums $(1/\sqrt {H}) \sum _{X < n \leq X+H} \chi (n)$, where $\chi $ is a fixed non-principal Dirichlet character modulo a prime q, and $0 \leq X \leq q-1$ is uniformly random. Davenport and Erdős, and more recently Lamzouri, proved central limit theorems for these sums provided $H \rightarrow \infty $ and $(\log H)/\log q \rightarrow 0$ as $q \rightarrow \infty $, and Lamzouri conjectured these should hold subject to the much weaker upper bound $H=o(q/\log q)$. We prove this is false for some $\chi $, even when $H = q/\log ^{A}q$ for any fixed $A> 0$. However, we show it is true for ‘almost all’ characters on the range $q^{1-o(1)} \leq H = o(q)$.
Using Pólya’s Fourier expansion, these results may be reformulated as statements about the distribution of certain Fourier series with number theoretic coefficients. Tools used in the proofs include the existence of characters with large partial sums on short initial segments, and moment estimates for trigonometric polynomials with random multiplicative coefficients.
We give a simple way to study the isotypical components of the homology of simplicial complexes with actions of finite groups and use it for Milnor fibres of isolated complete intersection singularity (icis). We study the homology of images of mappings ft that arise as deformations of complex map germs $f:(\mathbb{C}^n,S)\to(\mathbb{C}^p,0)$, with n < p, and the behaviour of singularities (instabilities) in this context. We study two generalizations of the notion of image Milnor number µI given by Mond and give a workable way of compute them, in corank one, with Milnor numbers of icis. We also study two unexpected traits when $p \gt n+1$: stable perturbations with contractible image and homology of $\text{im} f_t$ in unexpected dimensions. We show that Houston’s conjecture, µI constant in a family implies excellency in Gaffney’s sense, is false, but we give a correct modification of the statement of the conjecture which we also prove.
We determine the cohomology of the closed Drinfeld stratum of p-adic Deligne–Lusztig schemes of Coxeter type attached to arbitrary inner forms of unramified groups over a local non-archimedean field. We prove that the corresponding torus weight spaces are supported in exactly one cohomological degree and are pairwise non-isomorphic irreducible representations of the pro-unipotent radical of the corresponding parahoric subgroup. We also prove that all Moy–Prasad quotients of this stratum are maximal varieties, and we investigate the relation between the resulting representations and Kirillov’s orbit method.
We prove two sharp anisotropic weighted geometric inequalities that hold for star-shaped and F-mean convex hypersurfaces in $\mathbb{R}^{n+1}$, which involve the anisotropic p-momentum, the anisotropic perimeter, and the volume of the region enclosed by the hypersurface. We also consider their quantitative versions characterized by asymmetry index and the Hausdorff distance between the hypersurface and a rescaled Wulff shape. As a corollary, we obtain the stability of the Weinstock inequality for the first non-zero Steklov eigenvalue for star-shaped and strictly mean convex domains.
Let X be a smooth, projective and geometrically connected curve defined over a finite field ${\mathbb {F}}_q$ of characteristic p different from $2$ and $S\subseteq X$ a subset of closed points. Let $\overline {X}$ and $\overline {S}$ be their base changes to an algebraic closure of ${\mathbb {F}}_q$. We study the number of $\ell $-adic local systems $(\ell \neq p)$ in rank $2$ over $\overline {X}-\overline {S}$ with all possible prescribed tame local monodromies fixed by k-fold iterated action of Frobenius endomorphism for every $k\geq 1$. In all cases, we confirm conjectures of Deligne predicting that these numbers behave as if they were obtained from a Lefschetz fixed point formula. In fact, our counting results are expressed in terms of the numbers of some Higgs bundles.
In this article, we extend, with a great deal of generality, many results regarding the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target sets associated with a conformal iterated function system (IFS) previously established under the so-called open set condition. The novelty of the result we present is that it holds regardless of any separation assumption on the underlying IFS and thus extends to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2)164(3) (2006), 971–992] and by Barral and Seuret [The multifractal nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc.144(3) (2008), 707–727]. Moreover, it will be established that if S is conformal and satisfies mild separation assumptions (which are, for instance, satisfied for any self-similar IFS on $\mathbb {R}$ with algebraic parameters, no exact overlaps and similarity dimension smaller than $1$), then the classical result of Hill–Velani regarding the shrinking target problem associated with a conformal IFS satisfying the open set condition (and for which the Hausdorff measure was later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets on self-conformal sets. Mathematika67 (2021), 807–839]) can be extended.