To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article is the second in a series investigating cartesian closed varieties. In first of these, we showed that every non-degenerate finitary cartesian variety is a variety of sets equipped with an action by a Boolean algebra B and a monoid M which interact to form what we call a matched pair ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$. In this article, we show that such pairs ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$ are equivalent to Boolean restriction monoids and also to ample source-étale topological categories; these are generalizations of the Boolean inverse monoids and ample étale topological groupoids used to encode self-similar structures such as Cuntz and Cuntz–Krieger $C^\ast$-algebras, Leavitt path algebras, and the $C^\ast$-algebras associated with self-similar group actions. We explain and illustrate these links and begin the programme of understanding how topological and algebraic properties of such groupoids can be understood from the logical perspective of the associated varieties.
For multi-scale differential equations (or fast–slow equations), one often encounters problems in which a key system parameter slowly passes through a bifurcation. In this article, we show that a pair of prototypical reaction–diffusion equations in two space dimensions can exhibit delayed Hopf bifurcations. Solutions that approach attracting/stable states before the instantaneous Hopf point stay near these states for long, spatially dependent times after these states have become repelling/unstable. We use the complex Ginzburg–Landau equation and the Brusselator models as prototypes. We show that there exist two-dimensional spatio-temporal buffer surfaces and memory surfaces in the three-dimensional space-time. We derive asymptotic formulas for them for the complex Ginzburg–Landau equation and show numerically that they exist also for the Brusselator model. At each point in the domain, these surfaces determine how long the delay in the loss of stability lasts, that is, to leading order when the spatially dependent onset of the post-Hopf oscillations occurs. Also, the onset of the oscillations in these partial differential equations is a hard onset.
We determine the list of automorphism groups for smooth plane septic curves over an algebraically closed field $K$ of characteristic $0$, as well as their signatures. For each group, we also provide a geometrically complete family over$K$, which consists of a generic defining polynomial equation describing each locus up to $K$-projective equivalence. Notably, we present two distinct examples of what we refer to as final strata of smooth plane curves.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
Orbit separation dimension ($\mathrm {OSD}$), previously introduced as amorphic complexity, is a powerful complexity measure for topological dynamical systems with pure-point spectrum. Here, we develop methods and tools for it that allow a systematic application to translation dynamical systems of tiling spaces that are generated by primitive inflation rules. These systems share many nice properties that permit the explicit computation of the $\mathrm {OSD}$, thus providing a rich class of examples with non-trivial $\mathrm {OSD}$.
We prove that the class of separably algebraically closed valued fields equipped with a distinguished Frobenius endomorphism $x \mapsto x^q$ is decidable, uniformly in q. The result is a simultaneous generalization of the work of Chatzidakis and Hrushovski (in the case of the trivial valuation) and the work of the first author and Hrushovski (in the case where the fields are algebraically closed).
The logical setting for the proof is a model completeness result for valued fields equipped with an endomorphism $\sigma $ which is locally infinitely contracting and fails to be onto. Namely, we prove the existence of a model complete theory $\widetilde {\mathrm {VFE}}$ amalgamating the theories $\mathrm {SCFE}$ and $\widetilde {\mathrm {VFA}}$ introduced in [5] and [11], respectively. In characteristic zero, we also prove that $\widetilde {\mathrm {VFE}}$ is NTP$_2$ and classify the stationary types: they are precisely those orthogonal to the fixed field and the value group.
Étant donnée une suite $A = (a_n)_{n\geqslant 0}$ d’entiers naturels tous au moins égaux à 2, on pose $q_0 = 1$ et, pour tout entier naturel n, $q_{n+1} = a_n q_n$. Tout nombre entier naturel $n\geqslant 1$ admet une unique représentation dans la base A, dite de Cantor, de la forme
$$ \begin{align*} S = \sum_{n \leqslant x}\Lambda(n) f(n) \end{align*} $$
où $\Lambda $ est la fonction de von Mangoldt et f une fonction fortement multiplicative en base A. L’estimation des sommes de type I et II associées repose sur le bon contrôle de transformées de Fourier discrètes de fonctions construites à partir de f par décalage dans la numération en base A. Cette approche pouvant échouer si la suite $(a_n)_{n\geqslant 0}$ est trop irrégulière, nous introduisons la notion de base de Cantor tempérée et obtenons dans ce cadre une majoration générale de la somme S.
Nous étudions plusieurs exemples dans la base $A = (j+2)_{j\geqslant 0}$, dite factorielle. En particulier, si $s_A$ désigne la fonction somme de chiffres dans cette base et p parcourt la suite des nombres premiers, nous montrons que la suite $(s_A(p))_{p\in \mathcal {P}}$ est bien répartie dans les progressions arithmétiques, et que la suite $(\alpha s_A(p))_{p\in \mathcal {P}}$ est équirépartie modulo $1$ pour tout nombre irrationnel $\alpha $.
In this paper, we investigate hypersurfaces of $\mathbb{S}^2\times \mathbb{S}^2$ and $\mathbb{H}^2\times \mathbb{H}^2$ with recurrent Ricci tensor. As the main result, we prove that a hypersurface in $\mathbb{S}^2\times \mathbb{S}^2$ (resp. $\mathbb{H}^2\times \mathbb{H}^2$) with recurrent Ricci tensor is either an open part of $\Gamma \times \mathbb{S}^2$ (resp. $\Gamma \times \mathbb{H}^2$) for a curve $\Gamma$ in $\mathbb{S}^2$ (resp. $\mathbb{H}^2$), or a hypersurface with constant sectional curvature. The latter has been classified by H. Li, L. Vrancken, X. Wang, and Z. Yao very recently.
Given a countable group G and two subshifts X and Y over G, a continuous, shift-commuting map $\phi : X \to Y$ is called a homomorphism. Our main result states that if G is locally virtually nilpotent, X is aperiodic, and Y has the finite extension property, then there exists a homomorphism $\phi : X \to Y$. By combining this theorem with the main result of [1], we obtain that if the same conditions hold, and if additionally the topological entropy of X is less than the topological entropy of Y and Y has no global period, then X embeds into Y.
In this article, we deal with non-existence results, i.e., Liouville type results, for positive radial solutions of quasilinear elliptic equations with weights both in the entire $\mathbb R^N$ and in a ball, in the latter case under Dirichlet boundary conditions. The presence of weights, possibly singular or degenerate, makes the study fairly delicate. The proofs use a Pohozaev type identity combined with an accurate qualitative analysis of solutions. In the last part of the article, a non-existence theorem is proved for a Dirichlet problem with a convection term.
We provide a characterization of equivariant Fock covariant injective representations for product systems. We show that this characterization coincides with Nica covariance for compactly aligned product systems over right least common multiple semigroups of Kwaśniewski and Larsen and with the Toeplitz representations of a discrete monoid of Laca and Sehnem. By combining with the framework established by Katsoulis and Ramsey, we resolve the reduced Hao–Ng isomorphism problem for generalized gauge actions by discrete groups.
Asymptotic homogenisation is considered for problems with integral constraints imposed on a slowly varying microstructure; an insulator with an array of perfectly dielectric inclusions of slowly varying size serves as a paradigm. Although it is well-known how to handle each of these effects (integral constraints, slowly varying microstructure) independently within multiple scales analysis, additional care is needed when they are combined. Using the flux transport theorem, the multiple scales form of an integral constraint on a slowly varying domain is identified. The proposed form is applied to obtain a homogenised model for the electric potential in a dielectric composite, where the microstructure slowly varies and the integral constraint arises due to a statement of charge conservation. A comparison with multiple scales analysis of the problem with established approaches provides validation that the proposed form results in the correct homogenised model.
A p-arithmetic subgroup of $\mathbf {SL}_2(\mathbb {Q})$ like the Ihara group $\Gamma := \mathbf {SL}_2(\mathbb {Z}[1/p])$ acts by Möbius transformations on the Poincaré upper half plane $\mathcal H$ and on Drinfeld’s p-adic upper half plane ${\mathcal H_p := \mathbb {P}_1(\mathbb {C}_p)-\mathbb {P}_1(\mathbb {Q}_p)}$. The diagonal action of $\Gamma $ on the product is discrete, and the quotient $\Gamma \backslash (\mathcal H_p\times \mathcal H)$ can be envisaged as a ‘mock Hilbert modular surface’. According to a striking prediction of Neková$\check {\text {r}}$ and Scholl, the CM points on genuine Hilbert modular surfaces should give rise to ‘plectic Heegner points’ that encode nontrivial regulators attached, notably, to elliptic curves of rank two over real quadratic fields. This article develops the analogy between Hilbert modular surfaces and their mock counterparts, with the aim of transposing the plectic philosophy to the mock Hilbert setting, where the analogous plectic invariants are expected to lie in the alternating square of the Mordell–Weil group of certain elliptic curves of rank two over $\mathbb {Q}$.
where $c_+$ and $c_-$ are two positive constants. It is shown that the solution of the step-like initial problem can be characterised via the solution of a matrix Riemann–Hilbert (RH) problem in the new scale $(y,t)$. A double coordinate $(\xi, c)$ with $c=c_+/c_-$ is adopted to divide the half-plane $\{ (\xi, c)\,:\, \xi \in \mathbb{R}, \ c\gt 0, \ \xi =y/t\}$ into four asymptotic regions. Further applying the Deift–Zhou steepest descent method, we derive the long-time asymptotic expansions of the solution $u(y,t)$ in different space-time regions with appropriate g-functions. The corresponding leading asymptotic approximations are given with the slow/fast decay step-like background wave in genus-0 regions and elliptic waves in genus-2 regions. The second term of the asymptotics is characterised by the Airy function or parabolic cylinder model. Their residual error order is $\mathcal{O}(t^{-2})$ or $\mathcal{O}(t^{-1})$, respectively.
which models the motion of swimming bacteria in water flows. First, we prove blow-up criteria of strong solutions to the Cauchy problem, including the Prodi-Serrin-type criterion for $\alpha \gt \frac {3}{4}$ and the Beir$\tilde {\textrm {a}}$o da Veiga-type criterion for $\alpha \gt \frac {1}{2}$. Then, we verify the global existence and uniqueness of strong solutions for arbitrarily large initial fluid velocity and bacteria density for $\alpha \geq \frac {5}{4}$. Furthermore, in the scenario of $\frac {3}{4}\lt \alpha \lt \frac {5}{4}$, we establish uniform regularity estimates and optimal time-decay rates of global solutions if only the $L^2$-norm of initial data is small. To our knowledge, this work provides the first result concerning the global existence and large-time behaviour of strong solutions for the chemotaxis-Navier–Stokes equations with possibly large oscillations.
We describe algebraically, diagrammatically, and in terms of weight vectors, the restriction of tensor powers of the standard representation of quantum $\mathfrak {sl}_2$ to a coideal subalgebra. We realize the category as a module category over the monoidal category of type $\pm 1$ representations in terms of string diagrams and via generators and relations. The idempotents projecting onto the quantized eigenspaces are described as type $B/D$ analogues of Jones–Wenzl projectors. As an application, we introduce and give recursive formulas for analogues of $\Theta$-networks.
In his last paper, William Thurston defined the Master Teapot as the closure of the set of pairs $(z,s)$, where s is the slope of a tent map $T_s$ with the turning point periodic, and the complex number z is a Galois conjugate of s. In this case $1/z$ is a zero of the kneading determinant of $T_s$. We remove the restriction that the turning point is periodic, and sometimes look beyond tent maps. However, we restrict our attention to zeros $x=1/z$ in the real interval $(0,1)$. By the results of Milnor and Thurston, the kneading determinant has such a zero if and only if the map has positive topological entropy. We show that the first (smallest) zero is simple, but among other zeros there may be multiple ones. We describe a class of unimodal maps, so-called R-even ones, whose kneading determinant has only one zero in $(0,1)$. In contrast, we show that generic mixing tent maps have kneading determinants with infinitely many zeros in $(0,1)$. We prove that the second zero in $(0,1)$ of the kneading determinant of a unimodal map, provided it exists, is always greater than or equal to $\sqrt [3]{1/2}$, and if the kneading sequence begins with $RL^NR$, $N\geq 2$, then the best lower bound for the second zero is in fact $\sqrt [N+1]{1/2}$. We also investigate (partially numerically) the shape of the Real Teapot, consisting of the pairs $(s,x)$, where x in $(0,1)$ is a zero of the kneading determinant of $T_s$, and $s\in (1,2]$.