We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that p-groups of order p5 are determined by their group algebras over the field of p elements. Many cases have been dealt with in earlier work of ourselves and others. The only case whose details remain to be given here is that of groups of nilpotency class 3 for p odd.
It is shown that, over any ring R, the direct sum M = ⊕i∈IMi of uniform right R-modules Mi with local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a direct summand of M and there does not exist an infinite sequence of non-isomorphic monomorphisms , with distinct in ∈ I. As a consequence, any CS-module which is a direct sum of submodules with local endomorphism rings has the exchange property.
We show that the growth function of a finitely generated linear semigroup S ⊆ Mn(K) is controlled by its behaviour on finitely many cancellative subsemigroups of S. If the growth of S is polynomially bounded, then every cancellative subsemigroup T of S has a group of fractions G ⊆ Mn (K) which is nilpotent-by-finite and of finite rank. We prove that the latter condition, strengthened by the hypothesis that every such G has a finite unipotent radical, is sufficient for S to have a polynomial growth. Moreover, the degree of growth of S is then bounded by a polynomial f(n, r) in n and the maximal degree r of growth of finitely generated cancellative T ⊆ S.
For a module M Over an Artin algebra R, we discuss the question of whether the Yoneda extension algebra Ext(M, M) is finitely generated as an algebra. We give an answer for bounded modules M. (These are modules whose syzygies have direct summands of bounded lengths.)
Given an R-module M, the centralizer near-ring ℳR (M) is the set of all functions f: M → M with f(xr)= f(x)r for all x ∈ M and r∈R endowed with point-wise addition and composition of functions as multiplication. In general, ℳR(M) is not a ring but is a near-ring containing the endomorphism ring ER(M) of M. Necessary and/or sufficient conditions are derived for ℳR(M) to be a ring. For the case that R is a Dedekind domain, the R-modules M are characterized for which (i) ℳR(M) is a ring; and (ii)ℳR(M) = ER(M). It is shown that over Dedekind domains with finite prime spectrum properties (i) and (ii) are equivalent.
We shall give necessary and sufficient conditions on the ring R and the group G for the group-ring RG to be a prime P. I. ring with the unique factorisation property as defined in [5].
Let λ be a property that a lattice of submodules of a module may possess and which is preserved under taking sublattices and isomorphic images of such lattices and is satisfied by the lattice of subgroups of the group of integer numbers. For a ring R the lower radical Λ generated by the class λ(R) of R-modules whose lattice of submodules possesses the property λ is considered. This radical determines the unique ideal Λ (R) of R, called the λ-radical of R. We show that Λ is a Hoehnke radical of rings. Although generally Λ is not a Kurosh-Amitsur radical, it has the ADS-property and the class of Λ-radical rings is closed under extensions. We prove that Λ (Mn (R)) ⊆ Mn (Λ(R)) and give some illustrative examples.
Let R be any ring with identity, M a unital right R-module and α ≥ 0 an ordinal. Then M is a direct sum of a semisimple module and a module having Krull dimension at most α if and only if for every submodule N of M there exists a direct summand K of M such that K ⊆ N and N/K has Krull dimension at most α.
Let I be an ideal of a Noetherian ring R. The purpose of this paper is to study the relationship between the vanishing of the local cohomology modules , and the comparison of the topologies defined by the I-adic {In}n≥0, the symbolic {I(n)}n≥0 and the integral filtration
Let G be a group acting on a ring R. We study the problem of determining necessary and sufficient conditions in order that the skew group ring RG be von Neumann regular. Complete characterizations are given in some particular situations, including the case where all idempotents of R are central. For a regular ring R admitting a G-invariant pseudo-rank function N, with G finite, we obtain a necessary condition for RG being regular in terms of the induced action of G on the N-completion of R.
Band sums of associative rings were introduced by Weissglass in 1973. The main theorem claims that the support of every Artinian band sum of rings is finite. This result is analogous to the well-known theorem on Artinian semigroup rings.
The main purposes of this paper are to investigate ℤ-injective rings with the representation extension property and its dual, to give a necessary and sufficient condition for a ℤ-injective ring to be an amalgamation base in the class of all rings and to determine structure of ℤ-injective Noetherian rings which are amalgamation bases. Further, in the class of all commutative rings, it is shown that a commutative ring has the representation extension property, if, and only if, it is an amalgamation base.
An example of two disjoint special classes whose upper radicals coincide is presented. It is shown that the left hereditary subradical of the hereditary idempotent radical is right hereditary. An example of a hereditary and principally left hereditary radical which is not left hereditary is constructed.
We prove that the relation type of all high powers of an ideal in a Noetherian ring is either one or two. It is one exactly when some power of the ideal is locally principal.
In this paper we characterize Fountain-Gould left orders in abelian regular rings. Our first approach is via the multiplicative semigroups of the rings. We then represent certain rings by sheaves. Such representations lead us to a characterization of left orders in abelian regular rings such that all the idempotents of the quotient ring lie in the left order.
We present structural properties of the complex associative algebra generated by the canonical commutation relations in exponential form. In particular, we show it to be a central simple algebra that lacks zero divisors and is not Noetherian on either side; in addition, we determine explicitly its units and its automorphisms.
Given Γ-rings N1 and N2, a construction similar to the Everett sum of rings to find all possible extensions of N1 by N2 is given. Unlike the case of rings, it is not possible to find for any Γ-ring M an ideal extension that has a unity. Furthermore, contrary to the ring case, a Γ-ring with unity can not be characterized as a Γ-ring which is a direct summand in every extension thereof.
In this paper we prove algebraic generalizations of some results of C. J. K. Batty and A. B. Thaheem, concerned with the identity α + α−1 = β + β−1 where α and β are automorphisms of a C*-algebra. The main result asserts that if automorphisms α, β of a semiprime ring R satisfy α + α-1 = β + β−1 then there exist invariant ideals U1, U2 and U3 of R such that Ui ∩ Uj = 0, i ≠ j, U1 ⊕ U2 ⊕ U3 is an essential ideal, α = β on U1, α = β−1 on U2, and α2 = β2 = α−2 on U3. Furthermore, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), then U1 ⊕ U2 ⊕ U3 = R.
Let D be a nonzero derivation of a noncommutative prime ring R, and let U be the subring of R generated by all [D(x), x], x ∞ R. A classical theorem of Posner asserts that U is not contained in the center of R. Under the additional assumption that the characteristic of R is not 2, we prove a more general result stating that U contains a nonzero left ideal of R as well as a nonzero right ideal of R.