We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$
be an arithmetic progression. For
$\varepsilon>0$
we call a set
$\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$
an
$\varepsilon$
-approximate arithmetic progression if for some a and d,
$|x_i-(a+id)|<\varepsilon d$
holds for all
$i\in\{0,1\ldots,k-1\}$
. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their
$\varepsilon$
-approximation.
Random intersection graphs model networks with communities, assuming an underlying bipartite structure of communities and individuals, where these communities may overlap. We generalize the model, allowing for arbitrary community structures within the communities. In our new model, communities may overlap, and they have their own internal structure described by arbitrary finite community graphs. Our model turns out to be tractable. We analyze the overlapping structure of the communities, show local weak convergence (including convergence of subgraph counts), and derive the asymptotic degree distribution and the local clustering coefficient.
In the localization game on a graph, the goal is to find a fixed but unknown target node
$v^\star$
with the least number of distance queries possible. In the jth step of the game, the player queries a single node
$v_j$
and receives, as an answer to their query, the distance between the nodes
$v_j$
and
$v^\star$
. The sequential metric dimension (SMD) is the minimal number of queries that the player needs to guess the target with absolute certainty, no matter where the target is.
The term SMD originates from the related notion of metric dimension (MD), which can be defined the same way as the SMD except that the player’s queries are non-adaptive. In this work we extend the results of Bollobás, Mitsche, and Prałat [4] on the MD of Erdős–Rényi graphs to the SMD. We find that, in connected Erdős–Rényi graphs, the MD and the SMD are a constant factor apart. For the lower bound we present a clean analysis by combining tools developed for the MD and a novel coupling argument. For the upper bound we show that a strategy that greedily minimizes the number of candidate targets in each step uses asymptotically optimal queries in Erdős–Rényi graphs. Connections with source localization, binary search on graphs, and the birthday problem are discussed.
A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest.
We investigate spatial random graphs defined on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point is assigned an independent weight. Given the weight and position of the points, we form an edge between any pair of points independently with a probability depending on the two weights of the points and their distance. Preference is given to short edges and connections to vertices with large weights. We characterize the parameter regime where there is a non-trivial percolation phase transition and show that it depends not only on the power-law exponent of the degree distribution but also on a geometric model parameter. We apply this result to characterize robustness of age-based spatial preferential attachment networks.
Consider a homogeneous Poisson point process of the Euclidean plane and its Voronoi tessellation. The present note discusses the properties of two stationary point processes associated with the latter and depending on a parameter
$\theta$
. The first is the set of points that belong to some one-dimensional facet of the Voronoi tessellation and such that the angle with which they see the two nuclei defining the facet is
$\theta$
. The main question of interest on this first point process is its intensity. The second point process is that of the intersections of the said tessellation with a straight line having a random orientation. Its intensity is well known. The intersection points almost surely belong to one-dimensional facets. The main question here concerns the Palm distribution of the angle with which the points of this second point process see the two nuclei associated with the facet. We will give answers to these two questions and briefly discuss their practical motivations. We also discuss natural extensions to three dimensions.
Motivated by applications to a wide range of areas, including assemble-to-order systems, operations scheduling, healthcare systems, and the collaborative economy, we study a stochastic matching model on hypergraphs, extending the model of Mairesse and Moyal (J. Appl. Prob.53, 2016) to the case of hypergraphical (rather than graphical) matching structures. We address a discrete-event system under a random input of single items, simply using the system as an interface to be matched in groups of two or more. We primarily study the stability of this model, for various hypergraph geometries.
We prove concentration inequality results for geometric graph properties of an instance of the Cooper–Frieze [5] preferential attachment model with edge-steps. More precisely, we investigate a random graph model that at each time
$t\in \mathbb{N}$
, with probability p adds a new vertex to the graph (a vertex-step occurs) or with probability
$1-p$
an edge connecting two existent vertices is added (an edge-step occurs). We prove concentration results for the global clustering coefficient as well as the clique number. More formally, we prove that the global clustering, with high probability, decays as
$t^{-\gamma(p)}$
for a positive function
$\gamma$
of p, whereas the clique number of these graphs is, up to subpolynomially small factors, of order
$t^{(1-p)/(2-p)}$
.
Let R be a commutative ring with identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists
$r\in R- \{0\}$
such that
$Ir=(0)$
. The total graph of nonzero annihilating ideals of R is the graph
$\Omega (R)$
whose vertices are the nonzero annihilating ideals of R and two distinct vertices
$I,J$
are joined if and only if
$I+J$
is also an annihilating ideal of R. We study the strong metric dimension of
$\Omega (R)$
and evaluate it in several cases.
Using a variation of the rainbow construction and various pebble and colouring games, we prove that RRA, the class of all representable relation algebras, cannot be axiomatised by any first-order relation algebra theory of bounded quantifier depth. We also prove that the class At(RRA) of atom structures of representable, atomic relation algebras cannot be defined by any set of sentences in the language of RA atom structures that uses only a finite number of variables.
Ramsey algebras are an attempt to investigate Ramsey spaces generated by algebras in a purely combinatorial fashion. Previous studies have focused on the basic properties of Ramsey algebras and a few specific examples. In this article, we study the properties of Ramsey algebras from a structural point of view. For instance, we will see that isomorphic algebras have the same Ramsey algebraic properties, but elementarily equivalent algebras need not be so, as expected. We also answer an open question about Cartesian products of Ramsey algebras.
The Bollobás–Riordan (BR) polynomial [(2002), Math. Ann.323 81] is a universal polynomial invariant for ribbon graphs. We find an extension of this polynomial for a particular family of combinatorial objects, called rank 3 weakly coloured stranded graphs. Stranded graphs arise in the study of tensor models for quantum gravity in physics, and generalize graphs and ribbon graphs. We present a seven-variable polynomial invariant of these graphs, which obeys a contraction/deletion recursion relation similar to that of the Tutte and BR polynamials. However, it is defined on a much broader class of objects, and furthermore captures properties that are not encoded by the Tutte or BR polynomials.
We prove and generalise a conjecture in [MPP4] about the asymptotics of
$\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$
, where
$f^{\lambda/\mu}$
is the number of standard Young tableaux of skew shape
$\lambda/\mu$
which have stable limit shape under the
$1/\sqrt{n}$
scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and
$ C^{\ast } $
-algebras associated to these groupoids. We provide a new characterization of
$ 1 $
-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of
$ k $
-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators (
$ k $
-Ruelle triples and commuting Ruelle operators). Results on KMS states on
$ C^{\ast } $
-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
We present a single, connected tile which can tile the plane but only nonperiodically. The tile is hexagonal with edge markings, which impose simple rules as to how adjacent tiles are allowed to meet across edges. The first of these rules is a standard matching rule, that certain decorations match across edges. The second condition is a new type of matching rule, which allows tiles to meet only when certain decorations in a particular orientation are given the opposite charge. This forces the tiles to form a hierarchy of triangles, following a central idea of the Socolar–Taylor tilings. However, the new edge-to-edge orientational matching rule forces this structure in a very different way, which allows for a surprisingly simple proof of aperiodicity. We show that the hull of all tilings satisfying our rules is uniquely ergodic and that almost all tilings in the hull belong to a minimal core of tilings generated by substitution. Identifying tilings which are charge-flips of each other, these tilings are shown to have pure point dynamical spectrum and a regular model set structure.
In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth processes, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud and Smythe (1995, Theoret. Comput. Sci.144 221–249.) for bucket recursive trees. On the combinatorial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection between such bucket increasing tree families and certain families of graphs called increasing diamonds, providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci.9644 207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter
$K_n$
. It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree of the bucket containing label j, providing distributional decompositions, complementing and extending earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci.411(34–36) 3255–3273.).
We consider the component structure of the random digraph D(n,p) inside the critical window
$p = n^{-1} + \lambda n^{-4/3}$
. We show that the largest component
$\mathcal{C}_1$
has size of order
$n^{1/3}$
in this range. In particular we give explicit bounds on the tail probabilities of
$|\mathcal{C}_1|n^{-1/3}$
.
We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism. We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine (partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to checking dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps found by Wilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and Poulton.
We compare crystal combinatorics of the level
$2$
Fock space with the classification of unitary irreducible representations of type B rational Cherednik algebras to study how unitarity behaves under parabolic restriction. We show that the crystal operators that remove boxes preserve the combinatorial conditions for unitarity, and that the parabolic restriction functors categorifying the crystals send irreducible unitary representations to unitary representations. Furthermore, we find the supports of the unitary representations.