We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Involution Schubert polynomials represent cohomology classes of K-orbit closures in the complete flag variety, where K is the orthogonal or symplectic group. We show they also represent
$\mathsf {T}$
-equivariant cohomology classes of subvarieties defined by upper-left rank conditions in the spaces of symmetric or skew-symmetric matrices. This geometry implies that these polynomials are positive combinations of monomials in the variables
$x_i + x_j$
, and we give explicit formulas of this kind as sums over new objects called involution pipe dreams. Our formulas are analogues of the Billey–Jockusch–Stanley formula for Schubert polynomials. In Knutson and Miller’s approach to matrix Schubert varieties, pipe dream formulas reflect Gröbner degenerations of the ideals of those varieties, and we conjecturally identify analogous degenerations in our setting.
Immanants are functions on square matrices generalizing the determinant and permanent. Kazhdan–Lusztig immanants, which are indexed by permutations, involve
$q=1$
specializations of Type A Kazhdan–Lusztig polynomials, and were defined by Rhoades and Skandera (2006, Journal of Algebra 304, 793–811). Using results of Haiman (1993, Journal of the American Mathematical Society 6, 569–595) and Stembridge (1991, Bulletin of the London Mathematical Society 23, 422–428), Rhoades and Skandera showed that Kazhdan–Lusztig immanants are nonnegative on matrices whose minors are nonnegative. We investigate which Kazhdan–Lusztig immanants are positive on k-positive matrices (matrices whose minors of size
$k \times k$
and smaller are positive). The Kazhdan–Lusztig immanant indexed by v is positive on k-positive matrices if v avoids 1324 and 2143 and for all noninversions
$i< j$
of v, either
$j-i \leq k$
or
$v_j-v_i \leq k$
. Our main tool is Lewis Carroll’s identity.
Necklaces are the equivalence classes of words under the action of the cyclic group. Let a transition in a word be any change between two adjacent letters modulo the word’s length. We present a closed-form solution for the enumeration of necklaces in n beads, k colours and t transitions. We show that our result provides a more general solution to the problem of counting alternating (proper) colourings of the vertices of a regular n-gon.
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.
Morgan and Parker proved that if G is a group with
${\textbf{Z}(G)} = 1$
, then the connected components of the commuting graph of G have diameter at most
$10$
. Parker proved that if, in addition, G is solvable, then the commuting graph of G is disconnected if and only if G is a Frobenius group or a
$2$
-Frobenius group, and if the commuting graph of G is connected, then its diameter is at most
$8$
. We prove that the hypothesis
$Z (G) = 1$
in these results can be replaced with
$G' \cap {\textbf{Z}(G)} = 1$
. We also prove that if G is solvable and
$G/{\textbf{Z}(G)}$
is either a Frobenius group or a
$2$
-Frobenius group, then the commuting graph of G is disconnected.
We show that the sequence of moments of order less than 1 of averages of i.i.d. positive random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is log-convex and show that this holds eventually for integer moments (after neglecting the first
$p^2$
terms of the sequence).
Several results in the existing literature establish Euclidean density theorems of the following strong type. These results claim that every set of positive upper Banach density in the Euclidean space of an appropriate dimension contains isometric copies of all sufficiently large elements of a prescribed family of finite point configurations. So far, all results of this type discussed linear isotropic dilates of a fixed point configuration. In this paper, we initiate the study of analogous density theorems for families of point configurations generated by anisotropic dilations, i.e., families with power-type dependence on a single parameter interpreted as their size. More specifically, we prove nonisotropic power-type generalizations of a result by Bourgain on vertices of a simplex, a result by Lyall and Magyar on vertices of a rectangular box, and a result on distance trees, which is a particular case of the treatise of distance graphs by Lyall and Magyar. Another source of motivation for this paper is providing additional evidence for the versatility of the approach stemming from the work of Cook, Magyar, and Pramanik and its modification used recently by Durcik and the present author. Finally, yet another purpose of this paper is to single out anisotropic multilinear singular integral operators associated with the above combinatorial problems, as they are interesting on their own.
We study the back stable Schubert calculus of the infinite flag variety. Our main results are:
– a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part;
– a novel definition of double and triple Stanley symmetric functions;
– a proof of the positivity of double Edelman–Greene coefficients generalizing the results of Edelman–Greene and Lascoux–Schützenberger;
– the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman–Greene insertion algorithm;
– the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case;
– equivariant Pieri rules for the homology of the infinite Grassmannian;
– homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs of the van der Waerden lower bound for permanents of doubly stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of results are often proven by giving bounds on how much a particular differential operator can change the capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower matching conjecture.
Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least
$$|S| - m\ln |G|$$
elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least
$$|G{|^{1 - c{ \in ^l}}}$$
for certain c=c(m) and
$$ \in = \in (m) < 1$$
; we use the probabilistic method to give sharper values of c(m) and
$$ \in (m)$$
in the case when G is a vector space; and we give new proofs of related known results.
For an indifference graph G, we define a symmetric function of increasing spanning forests of G. We prove that this symmetric function satisfies certain linear relations, which are also satisfied by the chromatic quasisymmetric function and unicellular $\textrm {LLT}$ polynomials. As a consequence, we give a combinatorial interpretation of the coefficients of the $\textrm {LLT}$ polynomial in the elementary basis (up to a factor of a power of $(q-1)$), strengthening the description given in [4].
We determine the metric dimension of the annihilating-ideal graph of a local finite commutative principal ring and a finite commutative principal ring with two maximal ideals. We also find bounds for the metric dimension of the annihilating-ideal graph of an arbitrary finite commutative principal ring.
We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring when δ ≫ n−1/t, where an unavoidable t-colouring is any two-colouring of a clique of order 2t in which one colour forms either a clique of order t or two disjoint cliques of order t. Next, for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive contains an unavoidable t-tournament when δ ≫ n−1/[t/2], where an unavoidable t-tournament is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a transitive tournament of order t. Conditional on a well-known conjecture about bipartite Turán numbers, both our results are sharp up to implied constants and hence determine the order of magnitude of the corresponding off-diagonal Ramsey numbers.
Fix positive integers k and n with
$k \leq n$
. Numbers
$x_0, x_1, x_2, \ldots , x_{n - 1}$
, each equal to
$\pm {1}$
, are cyclically arranged (so that
$x_0$
follows
$x_{n - 1}$
) in that order. The problem is to find the product
$P = x_0x_1 \cdots x_{n - 1}$
of all n numbers by asking the smallest number of questions of the type
$Q_i$
: what is
$x_ix_{i + 1}x_{i + 2} \cdots x_{i+ k -1}$
? (where all the subscripts are read modulo n). This paper studies the problem and some of its generalisations.
The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.
An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.
Erdős asked if, for every pair of positive integers g and k, there exists a graph H having girth (H) = k and the property that every r-colouring of the edges of H yields a monochromatic cycle Ck. The existence of such graphs H was confirmed by the third author and Ruciński.
We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k. We show that there exists a graph H on R10k2; k15k3 vertices (where R = R(Ck; r) is the r-colour Ramsey number for the cycle Ck) having girth (H) = k and the Ramsey property that every r-colouring of the edges of H yields a monochromatic Ck Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.
We investigate the location of zeros for the partition function of the anti-ferromagnetic Ising model, focusing on the zeros lying on the unit circle. We give a precise characterization for the class of rooted Cayley trees, showing that the zeros are nowhere dense on the most interesting circular arcs. In contrast, we prove that when considering all graphs with a given degree bound, the zeros are dense in a circular sub-arc, implying that Cayley trees are in this sense not extremal. The proofs rely on describing the rational dynamical systems arising when considering ratios of partition functions on recursively defined trees.
The size-Ramsey number of a graph F is the smallest number of edges in a graph G with the Ramsey property for F, that is, with the property that any 2-colouring of the edges of G contains a monochromatic copy of F. We prove that the size-Ramsey number of the grid graph on n × n vertices is bounded from above by n3+o(1).