We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for
$k\ge 3$
, every k-graph on n vertices with minimum codegree at least
$n/2+o(n)$
contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such k-graphs is
${\exp(n\ln n-\Theta(n))}$
. As a corollary, we obtain a similar estimate on the number of Hamilton
${\ell}$
-cycles in such k-graphs for all
${\ell\in\{0,\ldots,k-1\}}$
, which makes progress on a question of Ferber, Krivelevich and Sudakov.
For a group G, we define a graph
$\Delta (G)$
by letting
$G^{\scriptsize\#}=G\setminus {\{\,1\,\}} $
be the set of vertices and by drawing an edge between distinct elements
$x,y\in G^{\scriptsize\#}$
if and only if the subgroup
$\langle x,y\rangle $
is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate
$\Delta (G)$
for a Z-group G.
We prove that, for any $t \ge 3$, there exists a constant c = c(t) > 0 such that any d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying $\lambda \le c{d^{t - 1}}/{n^{t - 2}}$ contains vertex-disjoint copies of kt covering all but at most ${n^{1 - 1/(8{t^4})}}$ vertices. This provides further support for the conjecture of Krivelevich, Sudakov and Szábo (Combinatorica24 (2004), pp. 403–426) that (n, d, λ)-graphs with n ∈ 3ℕ and $\lambda \le c{d^2}/n$ for a suitably small absolute constant c > 0 contain triangle-factors. Our arguments combine tools from linear programming with probabilistic techniques, and apply them in a certain weighted setting. We expect this method will be applicable to other problems in the field.
We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families of linear inequalities involving this sum. The results can be seen as new connections between partitions and divisors.
One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an
$a \times b \times c$
box
${\sf B}$
. Let
$\Psi (P)$
denote the smallest plane partition containing the minimal elements of
${\sf B} - P$
. Then if
$p= a+b+c-1$
is prime, Cameron and Fon-Der-Flaass conjectured that the cardinality of the
$\Psi $
-orbit of P is always a multiple of p.
This conjecture was established for
$p \gg 0$
by Cameron and Fon-Der-Flaass (1995) and for slightly smaller values of p in work of K. Dilks, J. Striker and the second author (2017). Our main theorem specializes to prove this conjecture in full generality.
The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.
Let G be a graph of minimum degree at least k and let Gp be the random subgraph of G obtained by keeping each edge independently with probability p. We are interested in the size of the largest complete minor that Gp contains when p = (1 + ε)/k with ε > 0. We show that with high probability Gp contains a complete minor of order
$\tilde{\Omega}(\sqrt{k})$
, where the ~ hides a polylogarithmic factor. Furthermore, in the case where the order of G is also bounded above by a constant multiple of k, we show that this polylogarithmic term can be removed, giving a tight bound.
A connected graph G is
$\mathcal {CF}$
-connected if there is a path between every pair of vertices with no crossing on its edges for each optimal drawing of G. We conjecture that a complete bipartite graph
$K_{m,n}$
is
$\mathcal {CF}$
-connected if and only if it does not contain a subgraph of
$K_{3,6}$
or
$K_{4,4}$
. We establish the validity of this conjecture for all complete bipartite graphs
$K_{m,n}$
for any
$m,n$
with
$\min \{m,n\}\leq 6$
, and conditionally for
$m,n\geq 7$
on the assumption of Zarankiewicz’s conjecture that
$\mathrm {cr}(K_{m,n})=\big \lfloor \frac {m}{2} \big \rfloor \big \lfloor \frac {m-1}{2} \big \rfloor \big \lfloor \frac {n}{2} \big \rfloor \big \lfloor \frac {n-1}{2} \big \rfloor $
.
An important problem in modeling networks is how to generate a randomly sampled graph with given degrees. A popular model is the configuration model, a network with assigned degrees and random connections. The erased configuration model is obtained when self-loops and multiple edges in the configuration model are removed. We prove an upper bound for the number of such erased edges for regularly-varying degree distributions with infinite variance, and use this result to prove central limit theorems for Pearson’s correlation coefficient and the clustering coefficient in the erased configuration model. Our results explain the structural correlations in the erased configuration model and show that removing edges leads to different scaling of the clustering coefficient. We prove that for the rank-1 inhomogeneous random graph, another null model that creates scale-free simple networks, the results for Pearson’s correlation coefficient as well as for the clustering coefficient are similar to the results for the erased configuration model.
Let
$K/F$
be an unramified quadratic extension of a non-Archimedean local field. In a previous work [1], we proved a formula for the intersection number on Lubin–Tate spaces. The main result of this article is an algorithm for computation of this formula in certain special cases. As an application, we prove the linear Arithmetic Fundamental Lemma for
$ \operatorname {{\mathrm {GL}}}_4$
with the unit element in the spherical Hecke Algebra.
Considering a natural generalization of the Ruzsa–Szemerédi problem, we prove that for any fixed positive integers r, s with r < s, there are graphs on n vertices containing
$n^{r}e^{-O\left(\sqrt{\log{n}}\right)}=n^{r-o(1)}$
copies of Ks such that any Kr is contained in at most one Ks. We also give bounds for the generalized rainbow Turán problem ex (n, H, rainbow - F) when F is complete. In particular, we answer a question of Gerbner, Mészáros, Methuku and Palmer, showing that there are properly edge-coloured graphs on n vertices with
$n^{r-1-o(1)}$
copies of Kr such that no Kr is rainbow.
For a finite group G, let
$\Delta (G)$
denote the character graph built on the set of degrees of the irreducible complex characters of G. A perfect graph is a graph
$\Gamma $
in which the chromatic number of every induced subgraph
$\Delta $
of
$\Gamma $
equals the clique number of
$\Delta $
. We show that the character graph
$\Delta (G)$
of a finite group G is always a perfect graph. We also prove that the chromatic number of the complement of
$\Delta (G)$
is at most three.
We answer four questions from a recent paper of Rao and Shinkar [17] on Lipschitz bijections between functions from {0, 1}n to {0, 1}. (1) We show that there is no O(1)-bi-Lipschitz bijection from Dictator to XOR such that each output bit depends on O(1) input bits. (2) We give a construction for a mapping from XOR to Majority which has average stretch
$O(\sqrt{n})$
, matching a previously known lower bound. (3) We give a 3-Lipschitz embedding
$\phi \colon \{0,1\}^n \to \{0,1\}^{2n+1}$
such that
$${\rm{XOR }}(x) = {\rm{ Majority }}(\phi (x))$$
for all
$x \in \{0,1\}^n$
. (4) We show that with high probability there is an O(1)-bi-Lipschitz mapping from Dictator to a uniformly random balanced function.
The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)– α n2, then one can remove εn2 edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose α = ε. We give a bound for the relationship of α and ε which is asymptotically sharp as ε → 0.
Let I be a zero-dimensional ideal in the polynomial ring
$K[x_1,\ldots ,x_n]$
over a field K. We give a bound for the number of roots of I in
$K^n$
counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.
We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special matrices to the expansion.
We prove two estimates for the expectation of the exponential of a complex function of a random permutation or subset. Using this theory, we find asymptotic expressions for the expected number of copies and induced copies of a given graph in a uniformly random graph with degree sequence(d1, …, dn) as n→ ∞. We also determine the expected number of spanning trees in this model. The range of degrees covered includes dj= λn + O(n1/2+ε) for some λ bounded away from 0 and 1.
In this paper, we show that the numbers of t-stack sortable n-permutations with k − 1 descents satisfy central and local limit theorems for t = 1, 2, n − 1 and n − 2. This result, in particular, gives an affirmative answer to Shapiro's question about the asymptotic normality of the Narayana numbers.
The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$, $$d \ge 2$$, is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$, where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments.
We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.
The bandwidth theorem of Böttcher, Schacht, and Taraz [Proof of the bandwidth conjecture of Bollobás andKomlós, Mathematische Annalen, 2009] gives a condition on the minimum degree of an n-vertex graph G that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth
$o(n)$
, thereby proving a conjecture of Bollobás and Komlós [The Blow-up Lemma, Combinatorics, Probability, and Computing, 1999]. In this paper, we prove a version of the bandwidth theorem for locally dense graphs. Indeed, we prove that every locally dense n-vertex graph G with
$\delta (G)> (1/2+o(1))n$
contains as a subgraph any given (spanning) H with bounded maximum degree and sublinear bandwidth.