To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
Given a fixed graph H that embeds in a surface $\Sigma$, what is the maximum number of copies of H in an n-vertex graph G that embeds in $\Sigma$? We show that the answer is $\Theta(n^{f(H)})$, where f(H) is a graph invariant called the ‘flap-number’ of H, which is independent of $\Sigma$. This simultaneously answers two open problems posed by Eppstein ((1993) J. Graph Theory17(3) 409–416.). The same proof also answers the question for minor-closed classes. That is, if H is a $K_{3,t}$ minor-free graph, then the maximum number of copies of H in an n-vertex $K_{3,t}$ minor-free graph G is $\Theta(n^{f'(H)})$, where f′(H) is a graph invariant closely related to the flap-number of H. Finally, when H is a complete graph we give more precise answers.
We determine the asymptotics of the number of independent sets of size $\lfloor \beta 2^{d-1} \rfloor$ in the discrete hypercube $Q_d = \{0,1\}^d$ for any fixed $\beta \in (0,1)$ as $d \to \infty$, extending a result of Galvin for $\beta \in (1-1/\sqrt{2},1)$. Moreover, we prove a multivariate local central limit theorem for structural features of independent sets in $Q_d$ drawn according to the hard-core model at any fixed fugacity $\lambda>0$. In proving these results we develop several general tools for performing combinatorial enumeration using polymer models and the cluster expansion from statistical physics along with local central limit theorems.
Let $Q$ be an acyclic quiver and $w \geqslant 1$ be an integer. Let $\mathsf {C}_{-w}({\mathbf {k}} Q)$ be the $(-w)$-cluster category of ${\mathbf {k}} Q$. We show that there is a bijection between simple-minded collections in $\mathsf {D}^b({\mathbf {k}} Q)$ lying in a fundamental domain of $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$. This generalises the same result of Iyama–Jin in the case that $Q$ is Dynkin. A key step in our proof is the observation that the heart $\mathsf {H}$ of a bounded t-structure in a Hom-finite, Krull–Schmidt, ${\mathbf {k}}$-linear saturated triangulated category $\mathsf {D}$ is functorially finite in $\mathsf {D}$ if and only if $\mathsf {H}$ has enough injectives and enough projectives. We then establish a bijection between $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and positive $w$-noncrossing partitions of the corresponding Weyl group $W_Q$.
Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$. In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$, where $\pi '$ is the conjugate of $\pi$. Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$. Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$. These results are refinements of some inequalities due to Swisher.
Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.
Suppose G and H are bipartite graphs and $L: V(G)\to 2^{V(H)}$ induces a partition of $V(H)$ such that the subgraph of H induced between $L(v)$ and $L(v')$ is a matching, whenever $vv'\in E(G)$. We show for each $\varepsilon>0$ that if H has maximum degree D and $|L(v)| \ge (1+\varepsilon )D/\log D$ for all $v\in V(G)$, then H admits an independent transversal with respect to L, provided D is sufficiently large. This bound on the part sizes is asymptotically sharp up to a factor $2$. We also show some asymmetric variants of this result.
The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$, bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.
Let $p_{\{3, 3\}}(n)$ denote the number of $3$-regular partitions in three colours. Da Silva and Sellers [‘Arithmetic properties of 3-regular partitions in three colours’, Bull. Aust. Math. Soc.104(3) (2021), 415–423] conjectured four Ramanujan-like congruences modulo $5$ satisfied by $p_{\{3, 3\}}(n)$. We confirm these conjectural congruences using the theory of modular forms.
We study the free metabelian group $M(2,n)$ of prime power exponent n on two generators by means of invariants $M(2,n)'\to \mathbb {Z}_n$ that we construct from colorings of the squares in the integer grid $\mathbb {R} \times \mathbb {Z} \cup \mathbb {Z} \times \mathbb {R}$. In particular, we improve bounds found by Newman for the order of $M(2,2^k)$. We study identities in $M(2,n)$, which give information about identities in the Burnside group $B(2,n)$ and the restricted Burnside group $R(2,n)$.
Let G be a simple complex algebraic group, and let $K \subset G$ be a reductive subgroup such that the coordinate ring of $G/K$ is a multiplicity-free G-module. We consider the G-algebra structure of $\mathbb C[G/K]$ and study the decomposition into irreducible summands of the product of irreducible G-submodules in $\mathbb C[G/K]$. When the spherical roots of $G/K$ generate a root system of type $\mathsf A$, we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of $G/K$ is a direct sum of subsystems of rank 1.
We study the number of ways of factoring elements in the complex reflection groups$G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in$G(r,s,n)$ to those in the symmetric group$S_n$, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in$G(r,s,n)$.
We interpret the degrees which arise in Tevelev’s study of scattering amplitudes in terms of moduli spaces of Hurwitz covers. Via excess intersection theory, the boundary geometry of the Hurwitz moduli space yields a simple recursion for the Tevelev degrees (together with their natural two parameter generalisation). We find exact solutions which specialise to Tevelev’s formula in his cases and connect to the projective geometry of lines and Castelnuovo’s classical count of $g^1_d$’s in other cases. For almost all values, the calculation of the two parameter generalisation of the Tevelev degree is new. A related count of refined Dyck paths is solved along the way.
A graph G is called a $(P_{\geq n},k)$-factor-critical covered graph if for any $Q\subseteq V(G)$ with $|Q|=k$ and any $e\in E(G-Q)$, $G-Q$ has a $P_{\geq n}$-factor covering e. We demonstrate that (i) a $(k+1)$-connected graph G with at least $k+3$ vertices is a $(P_{\geq 3},k)$-factor-critical covered graph if its toughness $t(G)>{(2+k)}/{3}$; (ii) a $(k+2)$-connected graph G is a $(P_{\geq 3},k)$-factor-critical covered graph if its isolated toughness $I(G)>{(5+k)}/{3}$. Furthermore, we show that the conditions on $t(G)$ and $I(G)$ are sharp.
Hajnal and Szemerédi proved that if G is a finite graph with maximum degree $\Delta $, then for every integer $k \geq \Delta +1$, G has a proper colouring with k colours in which every two colour classes differ in size at most by $1$; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree $\Delta $, then for each $k \geq \Delta + 1$, G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable $\Delta $-colourings of graphs with small average degree. Namely, we prove that if $\Delta \geq 3$, G does not contain a clique on $\Delta + 1$ vertices and $\mu $ is an atomless G-invariant probability measure such that the average degree of G with respect to $\mu $ is at most $\Delta /5$, then G has a $\mu $-equitable $\Delta $-colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.
We study a natural model of a random $2$-dimensional cubical complex which is a subcomplex of an n-dimensional cube, and where every possible square $2$-face is included independently with probability p. Our main result exhibits a sharp threshold $p=1/2$ for homology vanishing as $n \to \infty $. This is a $2$-dimensional analogue of the Burtin and Erdoős–Spencer theorems characterising the connectivity threshold for random graphs on the $1$-skeleton of the n-dimensional cube.
Our main result can also be seen as a cubical counterpart to the Linial–Meshulam theorem for random $2$-dimensional simplicial complexes. However, the models exhibit strikingly different behaviours. We show that if $p> 1 - \sqrt {1/2} \approx 0.2929$, then with high probability the fundamental group is a free group with one generator for every maximal $1$-dimensional face. As a corollary, homology vanishing and simple connectivity have the same threshold, even in the strong ‘hitting time’ sense. This is in contrast with the simplicial case, where the thresholds are far apart. The proof depends on an iterative algorithm for contracting cycles – we show that with high probability, the algorithm rapidly and dramatically simplifies the fundamental group, converging after only a few steps.
A classical theorem of Frucht states that any finite group appears as the automorphism group of a finite graph. In the quantum setting, the problem is to understand the structure of the compact quantum groups which can appear as quantum automorphism groups of finite graphs. We discuss here this question, notably with a number of negative results.
Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$-approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$-approximation.
Random intersection graphs model networks with communities, assuming an underlying bipartite structure of communities and individuals, where these communities may overlap. We generalize the model, allowing for arbitrary community structures within the communities. In our new model, communities may overlap, and they have their own internal structure described by arbitrary finite community graphs. Our model turns out to be tractable. We analyze the overlapping structure of the communities, show local weak convergence (including convergence of subgraph counts), and derive the asymptotic degree distribution and the local clustering coefficient.
In the localization game on a graph, the goal is to find a fixed but unknown target node $v^\star$ with the least number of distance queries possible. In the jth step of the game, the player queries a single node $v_j$ and receives, as an answer to their query, the distance between the nodes $v_j$ and $v^\star$. The sequential metric dimension (SMD) is the minimal number of queries that the player needs to guess the target with absolute certainty, no matter where the target is.
The term SMD originates from the related notion of metric dimension (MD), which can be defined the same way as the SMD except that the player’s queries are non-adaptive. In this work we extend the results of Bollobás, Mitsche, and Prałat [4] on the MD of Erdős–Rényi graphs to the SMD. We find that, in connected Erdős–Rényi graphs, the MD and the SMD are a constant factor apart. For the lower bound we present a clean analysis by combining tools developed for the MD and a novel coupling argument. For the upper bound we show that a strategy that greedily minimizes the number of candidate targets in each step uses asymptotically optimal queries in Erdős–Rényi graphs. Connections with source localization, binary search on graphs, and the birthday problem are discussed.