We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the tree limits recently defined by Elek and Tardos. In particular, we find tree limits for many classes of random trees. We give general theorems for three classes of conditional Galton–Watson trees and simply generated trees, for split trees and generalized split trees (as defined here), and for trees defined by a continuous-time branching process. These general results include, for example, random labelled trees, ordered trees, random recursive trees, preferential attachment trees, and binary search trees.
We find a new refinement of Fine’s partition theorem on partitions into distinct parts with the minimum part odd. As a consequence, we obtain two companion partition identities. Both analytic and combinatorial proofs are provided.
In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k=2, showing that there is always a square of a directed path of length , which is best possible.
A family of vectors in [k]n is said to be intersecting if any two of its elements agree on at least one coordinate. We prove, for fixed k ≥ 3, that the size of any intersecting subfamily of [k]n invariant under a transitive group of symmetries is o(kn), which is in stark contrast to the case of the Boolean hypercube (where k = 2). Our main contribution addresses limitations of existing technology: while there are now methods, first appearing in work of Ellis and the third author, for using spectral machinery to tackle problems in extremal set theory involving symmetry, this machinery relies crucially on the interplay between up-sets, biased product measures, and threshold behaviour in the Boolean hypercube, features that are notably absent in the problem considered here. To circumvent these barriers, introducing ideas that seem of independent interest, we develop a variant of the sharp threshold machinery that applies at the level of products of posets.
It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.
A shared ledger is a record of transactions that can be updated by any member of a group of users. The notion of independent and consistent record-keeping in a shared ledger is important for blockchain and more generally for distributed ledger technologies. In this paper we analyze a stochastic model for the shared ledger known as the tangle, which was devised as the basis for the IOTA cryptocurrency. The model is a random directed acyclic graph, and its growth is described by a non-Markovian stochastic process. We first prove ergodicity of the stochastic process, and then derive a delay differential equation for the fluid model which describes the tangle at high arrival rate. We prove convergence in probability of the tangle process to the fluid model, and also prove global stability of the fluid model. The convergence proof relies on martingale techniques.
A spectral sequence is established whose $E_{2}$ page is Bar-Natan's variant of Khovanov homology and which abuts to a deformation of instanton homology for knots and links. This spectral sequence arises as a specialization of a spectral sequence whose $E_{2}$ page is a characteristic-2 version of $F_{5}$ homology in Khovanov's classification.
We investigate additive properties of sets
$A,$
where
$A=\{a_1,a_2,\ldots ,a_k\}$
is a monotone increasing set of real numbers, and the differences of consecutive elements are all distinct. It is known that
$|A+B|\geq c|A||B|^{1/2}$
for any finite set of numbers
$B.$
The bound is tight up to the constant multiplier. We give a new proof to this result using bounds on crossing numbers of geometric graphs. We construct examples showing the limits of possible improvements. In particular, we show that there are arbitrarily large sets with different consecutive differences and sub-quadratic sumset size.
The peeling process, which describes a step-by-step exploration of a planar map, has been instrumental in addressing percolation problems on random infinite planar maps. Bond and face percolations on maps with faces of arbitrary degree are conveniently studied via so-called lazy-peeling explorations. During such explorations, distinct vertices on the exploration contour may, at latter stage, be identified, making the process less suited to the study of site percolation. To tackle this situation and to explicitly identify site-percolation thresholds, we come back to the alternative “simple” peeling exploration of Angel and uncover deep relations with the lazy-peeling process. Along the way, we define and study the random Boltzmann map of the half-plane with a simple boundary for an arbitrary critical weight sequence. Its construction is nontrivial especially in the “dense regime,” where the half-planar random Boltzmann map does not possess an infinite simple core.
Spatial random graphs capture several important properties of real-world networks. We prove quenched results for the continuous-space version of scale-free percolation introduced in [14]. This is an undirected inhomogeneous random graph whose vertices are given by a Poisson point process in $\mathbb{R}^d$. Each vertex is equipped with a random weight, and the probability that two vertices are connected by an edge depends on their weights and on their distance. Under suitable conditions on the parameters of the model, we show that, for almost all realizations of the point process, the degree distributions of all the nodes of the graph follow a power law with the same tail at infinity. We also show that the averaged clustering coefficient of the graph is self-averaging. In particular, it is almost surely equal to the annealed clustering coefficient of one point, which is a strictly positive quantity.
We give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.
Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density
T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however, no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t, is known. In this paper, we prove that ct > 1/2 – ε as soon as t contains sufficiently many blocks of 1s in its binary expansion. In the proof, we provide estimates for the moments of an associated probability distribution; this extends the study initiated by Emme and Prikhod’ko (2017) and pursued by Emme and Hubert (2018).
We use the model theoretic notion of coheir to give short proofs of old and new theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among their consequences partition theorems due to Carlson and to Gowers.
It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph
$G_n$
with n vertices is asymptotically bounded from below by
$\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$
. Such a bound is obtained by comparing the walk on
$G_n$
to the walk on d-regular tree
$\mathcal{T}_d$
. If one can map another transitive graph
$\mathcal{G} $
onto
$G_n$
, then we can improve the strategy by using a comparison with the random walk on
$\mathcal{G} $
(instead of that of
$\mathcal{T} _d$
), and we obtain a lower bound of the form
$\frac {1}{\mathfrak{h} }\log n$
, where
$\mathfrak{h} $
is the entropy rate associated with
$\mathcal{G} $
. We call this the entropic lower bound.
It was recently proved that in the case
$\mathcal{G} =\mathcal{T} _d$
, this entropic lower bound (in that case
$\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$
) is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient condition on the spectra of the random walks on
$G_n$
under which the random walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to random walks on random n-lifts of a base graph (including nonreversible walks).
Let G be a finite group, let
${\mathrm{Irr}}(G)$
be the set of all irreducible complex characters of G and let
$\chi \in {\mathrm{Irr}}(G)$
. Define the codegrees,
${\mathrm{cod}}(\chi ) = |G: {\mathrm{ker}}\chi |/\chi (1)$
and
${\mathrm{cod}}(G) = \{{\mathrm{cod}}(\chi ) \mid \chi \in {\mathrm{Irr}}(G)\} $
. We show that the simple group
${\mathrm{PSL}}(2,q)$
, for a prime power
$q>3$
, is uniquely determined by the set of its codegrees.
We define a fragment of monadic infinitary second-order logic corresponding to an abstract separation property. We use this to define the concept of a separation subclass. We use model theoretic techniques and games to show that separation subclasses whose axiomatisations are recursively enumerable in our second-order fragment can also be recursively axiomatised in their original first-order language. We pin down the expressive power of this formalism with respect to first-order logic, and investigate some questions relating to decidability and computational complexity. As applications of these results, by showing that certain classes can be straightforwardly defined as separation subclasses, we obtain first-order axiomatisability results for these classes. In particular we apply this technique to graph colourings and a class of partial algebras arising from separation logic.
The Corners theorem states that for any α > 0 there exists an N0 such that for any abelian group G with |G| = N ≥ N0 and any subset A ⊂ G×G with |A| ≥ αN2 we can find a corner in A, i.e. there exist x, y, d ∈ G with d ≠ 0 such that (x,y),(x+d,y),(x,y+d) ∈ A.
Here, we consider a stronger version, in which we try to find many corners of the same size. Given such a group G and subset A, for each d ∈ G we define Sd={(x,y) ∈ G × G: (x,y),(x+d,y),(x,y+d) ∈ A}. So |Sd| is the number of corners of size d. Is it true that, provided N is sufficiently large, there must exist some d ∈G\{0} such that |Sd|>(α3-ϵ)N2?
We answer this question in the negative. We do this by relating the problem to a much simpler-looking problem about random variables. Then, using this link, we show that there are sets A with |Sd|>Cα3.13N2 for all d ≠ 0, where C is an absolute constant. We also show that in the special case where $G = {\mathbb{F}}_2^n$, one can always find a d with |Sd|>(α4-ϵ)N2.
We investigate the uniform computational content of the open and clopen Ramsey theorems in the Weihrauch lattice. While they are known to be equivalent to
$\mathrm {ATR_0}$
from the point of view of reverse mathematics, there is not a canonical way to phrase them as multivalued functions. We identify eight different multivalued functions (five corresponding to the open Ramsey theorem and three corresponding to the clopen Ramsey theorem) and study their degree from the point of view of Weihrauch, strong Weihrauch, and arithmetic Weihrauch reducibility. In particular one of our functions turns out to be strictly stronger than any previously studied multivalued functions arising from statements around
$\mathrm {ATR}_0$
.