We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalised exponents. Our refinement gives a uniform proof and generalisation of a recent theorem of the second author.
We develop a theory of graph algebras over general fields. This is modelled after the theory developed by Freedman et al. (2007, J. Amer. Math. Soc.20 37–51) for connection matrices, in the study of graph homomorphism functions over real edge weight and positive vertex weight. We introduce connection tensors for graph properties. This notion naturally generalizes the concept of connection matrices. It is shown that counting perfect matchings, and a host of other graph properties naturally defined as Holant problems (edge models), cannot be expressed by graph homomorphism functions with both complex vertex and edge weights (or even from more general fields). Our necessary and sufficient condition in terms of connection tensors is a simple exponential rank bound. It shows that positive semidefiniteness is not needed in the more general setting.
Let
$p=3n+1$
be a prime with
$n\in \mathbb {N}=\{0,1,2,\ldots \}$
and let
$g\in \mathbb {Z}$
be a primitive root modulo p. Let
$0<a_1<\cdots <a_n<p$
be all the cubic residues modulo p in the interval
$(0,p)$
. Then clearly the sequence
$a_1 \bmod p,\, a_2 \bmod p,\ldots , a_n \bmod p$
is a permutation of the sequence
$g^3 \bmod p,\,g^6 \bmod p,\ldots , g^{3n} \bmod p$
. We determine the sign of this permutation.
We show that fractal percolation sets in $\mathbb{R}^{d}$ almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if $E\subset\mathbb{R}^{d}$ is a realisation of a fractal percolation process, then almost surely (conditioned on $E\neq\emptyset$), for every countable collection $\left(f_{i}\right)_{i\in\mathbb{N}}$ of $C^{1}$ diffeomorphisms of $\mathbb{R}^{d}$, $\dim_{H}\left(E\cap\left(\bigcap_{i\in\mathbb{N}}f_{i}\left(\text{BA}_{d}\right)\right)\right)=\dim_{H}\left(E\right)$, where $\text{BA}_{d}$ is the set of badly approximable vectors in $\mathbb{R}^{d}$. We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to $\dim_{H}\left(E\right)$.
We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to $\mathbb{R}^{d}$ yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.
We introduce and study analogues of expander and hyperfinite graph sequences in the context of directed acyclic graphs, which we call ‘extender’ and ‘hypershallow’ graph sequences, respectively. Our main result is a probabilistic construction of non-hypershallow graph sequences.
We prove several different anti-concentration inequalities for functions of independent Bernoulli-distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form 1/e + o(1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration inequality for polynomials with nonnegative coefficients which extends the classical Erdős–Littlewood–Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an application, we prove some new anti-concentration bounds for subgraph counts in random graphs.
It is well known that for any integers k and g, there is a graph with chromatic number at least k and girth at least g. In 1960s, Erdös and Hajnal conjectured that for any k and g, there exists a number h(k,g), such that every graph with chromatic number at least h(k,g) contains a subgraph with chromatic number at least k and girth at least g. In 1977, Rödl proved the case when
$g=4$
, for arbitrary k. We prove the fractional chromatic number version of Rödl’s result.
What is the maximum number of copies of a fixed forest T in an n-vertex graph in a graph class
$\mathcal {G}$
as
$n\to \infty $
? We answer this question for a variety of sparse graph classes
$\mathcal {G}$
. In particular, we show that the answer is
$\Theta (n^{\alpha _{d}(T)})$
where
$\alpha _{d}(T)$
is the size of the largest stable set in the subforest of T induced by the vertices of degree at most d, for some integer d that depends on
$\mathcal {G}$
. For example, when
$\mathcal {G}$
is the class of k-degenerate graphs then
$d=k$
; when
$\mathcal {G}$
is the class of graphs containing no
$K_{s,t}$
-minor (
$t\geqslant s$
) then
$d=s-1$
; and when
$\mathcal {G}$
is the class of k-planar graphs then
$d=2$
. All these results are in fact consequences of a single lemma in terms of a finite set of excluded subgraphs.
A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$. The previous best bound was $O(\Delta^{37})$. This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$. The best previous bound for this result was exponential in $\Delta$.
The Zarankiewicz problem asks for an estimate on z(m, n; s, t), the largest number of 1’s in an m × n matrix with all entries 0 or 1 containing no s × t submatrix consisting entirely of 1’s. We show that a classical upper bound for z(m, n; s, t) due to Kővári, Sós and Turán is tight up to the constant for a broad range of parameters. The proof relies on a new quantitative variant of the random algebraic method.
A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph
$K_n$
arrows a small graph H, then every ‘dense’ subgraph of
$K_n$
also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if
$n = 3t+r$
where
$r \in \{0,1,2\}$
and G is an n-vertex graph with
$\delta(G) \ge (3n-1)/4$
, then for every 2-edge-colouring of G, either there are cycles of every length
$\{3, 4, 5, \dots, 2t+r\}$
of the same colour, or there are cycles of every even length
$\{4, 6, 8, \dots, 2t+2\}$
of the samecolour.
Our result is tight in the sense that no longer cycles (of length
$>2t+r$
) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every
$(3t-1)$
-vertex graph G with minimum degree larger than
$3|V(G)|/4$
arrows the path
$P_{2n}$
with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for
$n=3t+r$
where
$r \in \{0,1,2\}$
and every n-vertex graph G with
$\delta(G) \ge 3n/4$
, in each 2-edge-colouring of G there exists a monochromatic cycle of length at least
$2t+r$
.
Gireesh and Mahadeva Naika [‘On 3-regular partitions in 3-colors’, Indian J. Pure Appl. Math.50 (2019), 137–148] proved an infinite family of congruences modulo powers of 3 for the function
$p_{\{3,3\}}(n)$
, the number of 3-regular partitions in three colours. In this paper, using elementary generating function manipulations and classical techniques, we significantly extend the list of proven arithmetic properties satisfied by
$p_{\{3,3\}}(n).$
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
We consider a stochastic matching model with a general compatibility graph, as introduced by Mairesse and Moyal (2016). We show that the natural necessary condition of stability of the system is also sufficient for the natural ‘first-come, first-matched’ matching policy. To do so, we derive the stationary distribution under a remarkable product form, by using an original dynamic reversibility property related to that of Adan, Bušić, Mairesse, and Weiss (2018) for the bipartite matching model.
We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number n of vertices on discrete tori and bounded degree trees, of order $${\mathcal O}(n\log \log n)$$ on bounded degree expanders, and of order $${\mathcal O}(n{(\log \log n)^2})$$ on the Erdős–Rényi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy and prove a dichotomy in efficiency between computing strategies for hitting and cover times.
Let $${{\mathcal G}_{n,r,s}}$$ denote a uniformly random r-regular s-uniform hypergraph on the vertex set {1, 2, … , n}. We establish a threshold result for the existence of a spanning tree in $${{\mathcal G}_{n,r,s}}$$, restricting to n satisfying the necessary divisibility conditions. Specifically, we show that when s ≥ 5, there is a positive constant ρ(s) such that for any r ≥ 2, the probability that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree tends to 1 if r > ρ(s), and otherwise this probability tends to zero. The threshold value ρ(s) grows exponentially with s. As $${{\mathcal G}_{n,r,s}}$$ is connected with probability that tends to 1, this implies that when r ≤ ρ(s), most r-regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4 we prove that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree with probability that tends to 1, for any r ≥ 2. Our proof also provides the asymptotic distribution of the number of spanning trees in $${{\mathcal G}_{n,r,s}}$$ for all fixed integers r, s ≥ 2. Previously, this asymptotic distribution was only known in the trivial case of 2-regular graphs, or for cubic graphs.
We consider two natural gradings on the space of symmetric functions: by degree and by length. We introduce a differential operator T that leaves the components of this double grading invariant and exhibit a basis of bihomogeneous symmetric functions in which this operator is triangular. This allows us to compute the eigenvalues of T, which turn out to be nonnegative integers.
We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two.
We prove that most permutations of degree $n$ have some power which is a cycle of prime length approximately $\log n$. Explicitly, we show that for $n$ sufficiently large, the proportion of such elements is at least $1-5/\log \log n$ with the prime between $\log n$ and $(\log n)^{\log \log n}$. The proportion of even permutations with this property is at least $1-7/\log \log n$.
In 2010, Rhoades proved that promotion on rectangular standard Young tableaux, together with the associated fake-degree polynomial, provides an instance of the cyclic sieving phenomenon. We extend this result to m-tuples of skew standard Young tableaux of the same shape, for fixed m, subject to the condition that the mth power of the associated fake-degree polynomial evaluates to nonnegative integers at roots of unity. However, we are unable to specify an explicit group action. Put differently, we determine in which cases the mth tensor power of a skew character of the symmetric group carries a permutation representation of the cyclic group.
To do so, we use a method proposed by Amini and the first author, which amounts to establishing a bound on the number of border-strip tableaux of skew shape. Finally, we apply our results to the invariant theory of tensor powers of the adjoint representation of the general linear group. In particular, we prove the existence of a bijection between permutations and Stembridge’s alternating tableaux, which intertwines rotation and promotion.