To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies the magnitude homology of graphs focusing mainly on the relationship between its diagonality and the girth. The magnitude and magnitude homology are formulations of the Euler characteristic and the corresponding homology, respectively, for finite metric spaces, first introduced by Leinster and Hepworth–Willerton. Several authors study them restricting to graphs with path metric, and some properties which are similar to the ordinary homology theory have come to light. However, the whole picture of their behaviour is still unrevealed, and it is expected that they catch some geometric properties of graphs. In this article, we show that the girth of graphs partially determines the magnitude homology, that is, the larger girth a graph has, the more homologies near the diagonal part vanish. Furthermore, applying this result to a typical random graph, we investigate how the diagonality of graphs varies statistically as the edge density increases. In particular, we show that there exists a phase transition phenomenon for the diagonality.
Negative dependence of sequences of random variables is often an interesting characteristic of their distribution, as well as a useful tool for studying various asymptotic results, including central limit theorems, Poisson approximations, the rate of increase of the maximum, and more. In the study of probability models of tournaments, negative dependence of participants’ outcomes arises naturally, with application to various asymptotic results. In particular, the property of negative orthant dependence was proved in several articles for different tournament models, with a special proof for each model. In this note we unify these results by proving a stronger property, negative association, a generalization leading to a very simple proof. We also present a natural example of a knockout tournament where the scores are negatively orthant dependent but not negatively associated. The proof requires a new result on a preservation property of negative orthant dependence that is of independent interest.
We consider the family $\mathrm {MC}_d$ of monic centered polynomials of one complex variable with degree $d \geq 2$, and study the map $\widehat {\Phi }_d:\mathrm {MC}_d\to \widetilde {\Lambda }_d \subset \mathbb {C}^d / \mathfrak {S}_d$ which maps each $f \in \mathrm {MC}_d$ to its unordered collection of fixed-point multipliers. We give an explicit formula for counting the number of elements of each fiber $\widehat {\Phi }_d^{-1}(\bar {\unicode{x3bb} })$ for every $\bar {\unicode{x3bb} } \in \widetilde {\Lambda }_d$ except when the fiber $\widehat {\Phi }_d^{-1}(\bar {\unicode{x3bb} })$ contains polynomials having multiple fixed points. This formula is not a recursive one, and is a drastic improvement of our previous result [T. Sugiyama. The moduli space of polynomial maps and their fixed-point multipliers. Adv. Math.322 (2017), 132–185] which gave a rather long algorithm with some induction processes.
Given a family $\mathcal{F}$ of bipartite graphs, the Zarankiewicz number$z(m,n,\mathcal{F})$ is the maximum number of edges in an $m$ by $n$ bipartite graph $G$ that does not contain any member of $\mathcal{F}$ as a subgraph (such $G$ is called $\mathcal{F}$-free). For $1\leq \beta \lt \alpha \lt 2$, a family $\mathcal{F}$ of bipartite graphs is $(\alpha,\beta )$-smooth if for some $\rho \gt 0$ and every $m\leq n$, $z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any $(\alpha,\beta )$-smooth family $\mathcal{F}$, there exists $k_0$ such that for all odd $k\geq k_0$ and sufficiently large $n$, any $n$-vertex $\mathcal{F}\cup \{C_k\}$-free graph with minimum degree at least $\rho (\frac{2n}{5}+o(n))^{\alpha -1}$ is bipartite. In this paper, we strengthen their result by showing that for every real $\delta \gt 0$, there exists $k_0$ such that for all odd $k\geq k_0$ and sufficiently large $n$, any $n$-vertex $\mathcal{F}\cup \{C_k\}$-free graph with minimum degree at least $\delta n^{\alpha -1}$ is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families $\mathcal{F}$ consisting of the single graph $K_{s,t}$ when $t\gg s$. We also prove an analogous result for $C_{2\ell }$-free graphs for every $\ell \geq 2$, which complements a result of Keevash, Sudakov and Verstraëte.
Let G be a finite transitive group on a set $\Omega $, let $\alpha \in \Omega $, and let $G_{\alpha }$ be the stabilizer of the point $\alpha $ in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of $\Omega $ lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than $5/6$, then each element of $\Omega $ lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound $5/6$.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
We investigate quantum lens spaces, $C(L_q^{2n+1}(r;\underline {m}))$, introduced by Brzeziński and Szymański as graph $C^*$-algebras. We give a new description of $C(L_q^{2n+1}(r;\underline {m}))$ as graph $C^*$-algebras amending an error in the original paper by Brzeziński and Szymański. Furthermore, for $n\leq 3$, we give a number-theoretic invariant, when all but one weight are coprime to the order of the acting group r. This builds upon the work of Eilers, Restorff, Ruiz, and Sørensen.
Suppose that m drivers each choose a preferred parking space in a linear car park with n spots. In order, each driver goes to their chosen spot and parks there if possible, and otherwise takes the next available spot if it exists. If all drivers park successfully, the sequence of choices is called a parking function. Classical parking functions correspond to the case $m=n$.
We investigate various probabilistic properties of a uniform parking function. Through a combinatorial construction termed a parking function multi-shuffle, we give a formula for the law of multiple coordinates in the generic situation $m \lesssim n$. We further deduce all possible covariances: between two coordinates, between a coordinate and an unattempted spot, and between two unattempted spots. This asymptotic scenario in the generic situation $m \lesssim n$ is in sharp contrast with that of the special situation $m=n$.
A generalization of parking functions called interval parking functions is also studied, in which each driver is willing to park only in a fixed interval of spots. We construct a family of bijections between interval parking functions with n cars and n spots and edge-labeled spanning trees with $n+1$ vertices and a specified root.
The classic game of Battleship involves two players taking turns attempting to guess the positions of a fleet of vertically or horizontally positioned enemy ships hidden on a $10\times 10$ grid. One variant of this game, also referred to as Battleship Solitaire, Bimaru or Yubotu, considers the game with the inclusion of X-ray data, represented by knowledge of how many spots are occupied in each row and column in the enemy board. This paper considers the Battleship puzzle problem: the problem of reconstructing an enemy fleet from its X-ray data. We generate non-unique solutions to Battleship puzzles via certain reflection transformations akin to Ryser interchanges. Furthermore, we demonstrate that solutions of Battleship puzzles may be reliably obtained by searching for solutions of the associated classical binary discrete tomography problem which minimise the discrete Laplacian. We reformulate this optimisation problem as a quadratic unconstrained binary optimisation problem and approximate solutions via a simulated annealer, emphasising the future practical applicability of quantum annealers to solving discrete tomography problems with predefined structure.
We first establish a lower bound on the size and spectral radius of a graph G to guarantee that G contains a fractional perfect matching. Then, we determine an upper bound on the distance spectral radius of a graph G to ensure that G has a fractional perfect matching. Furthermore, we construct some extremal graphs to show all the bounds are best possible.
Recently, when studying intricate connections between Ramanujan’s theta functions and a class of partition functions, Banerjee and Dastidar [‘Ramanujan’s theta functions and parity of parts and cranks of partitions’, Ann. Comb., to appear] studied some arithmetic properties for $c_o(n)$, the number of partitions of n with odd crank. They conjectured a congruence modulo $4$ satisfied by $c_o(n)$. We confirm the conjecture and evaluate $c_o(4n)$ modulo $8$ by dissecting some q-series into even powers. Moreover, we give a conjecture on the density of divisibility of odd cranks modulo 4, 8 and 16.
We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) variables. Let $R_n$ denote the ring of polynomials in n anticommuting variables. The main results of this paper show the following interesting facts about quasisymmetric polynomials in anticommuting variables:
(1) The quasisymmetric polynomials in $R_n$ form a commutative subalgebra of $R_n$.
(2) There is a basis of the quotient of $R_n$ by the ideal $I_n$ generated by the quasisymmetric polynomials in $R_n$ that is indexed by ballot sequences. The Hilbert series of the quotient is given by
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the $\varepsilon$-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the $\varepsilon$-blanket times of the random walks if the $\varepsilon$-blanket time of the limiting diffusion is continuous at $\varepsilon$ with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the $\varepsilon$-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
The book graph $B_n ^{(k)}$ consists of $n$ copies of $K_{k+1}$ joined along a common $K_k$. In the prequel to this paper, we studied the diagonal Ramsey number $r(B_n ^{(k)}, B_n ^{(k)})$. Here we consider the natural off-diagonal variant $r(B_{cn} ^{(k)}, B_n^{(k)})$ for fixed $c \in (0,1]$. In this more general setting, we show that an interesting dichotomy emerges: for very small $c$, a simple $k$-partite construction dictates the Ramsey function and all nearly-extremal colourings are close to being $k$-partite, while, for $c$ bounded away from $0$, random colourings of an appropriate density are asymptotically optimal and all nearly-extremal colourings are quasirandom. Our investigations also open up a range of questions about what happens for intermediate values of $c$.
Let G be a finite group. Let $H, K$ be subgroups of G and $H \backslash G / K$ the double coset space. If Q is a probability on G which is constant on conjugacy classes ($Q(s^{-1} t s) = Q(t)$), then the random walk driven by Q on G projects to a Markov chain on $H \backslash G /K$. This allows analysis of the lumped chain using the representation theory of G. Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on $GL_n(q)$ onto a Markov chain on $S_n$ via the Bruhat decomposition. The chain on $S_n$ has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.
We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$. For each fixed $k \geq 3$, the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$. The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$. Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$, by $\mathsf {ADS}$, and by $\mathsf {SADS}$. Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$.
We give an example of an FIID vertex-labeling of ${\mathbb T}_3$ whose marginals are uniform on $[0,1]$, and if we delete the edges between those vertices whose labels are different, then some of the remaining clusters are infinite. We also show that no such process can be finitary.
Let $G=(V,E)$ be a countable graph. The Bunkbed graph of $G$ is the product graph $G \times K_2$, which has vertex set $V\times \{0,1\}$ with “horizontal” edges inherited from $G$ and additional “vertical” edges connecting $(w,0)$ and $(w,1)$ for each $w \in V$. Kasteleyn’s Bunkbed conjecture states that for each $u,v \in V$ and $p\in [0,1]$, the vertex $(u,0)$ is at least as likely to be connected to $(v,0)$ as to $(v,1)$ under Bernoulli-$p$ bond percolation on the bunkbed graph. We prove that the conjecture holds in the $p \uparrow 1$ limit in the sense that for each finite graph $G$ there exists $\varepsilon (G)\gt 0$ such that the bunkbed conjecture holds for $p \geqslant 1-\varepsilon (G)$.
An old conjecture of Erdős and McKay states that if all homogeneous sets in an $n$-vertex graph are of order $O(\!\log n)$ then the graph contains induced subgraphs of each size from $\{0,1,\ldots, \Omega \big(n^2\big)\}$. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an $n \times n$ bipartite graph are of order $O(\!\log n)$, then the graph contains induced subgraphs of each size from $\{0,1,\ldots, \Omega \big(n^2\big)\}$.
Given a graphon $W$ and a finite simple graph $H$, with vertex set $V(H)$, denote by $X_n(H, W)$ the number of copies of $H$ in a $W$-random graph on $n$ vertices. The asymptotic distribution of $X_n(H, W)$ was recently obtained by Hladký, Pelekis, and Šileikis [17] in the case where $H$ is a clique. In this paper, we extend this result to any fixed graph $H$. Towards this we introduce a notion of $H$-regularity of graphons and show that if the graphon $W$ is not $H$-regular, then $X_n(H, W)$ has Gaussian fluctuations with scaling $n^{|V(H)|-\frac{1}{2}}$. On the other hand, if $W$ is $H$-regular, then the fluctuations are of order $n^{|V(H)|-1}$ and the limiting distribution of $X_n(H, W)$ can have both Gaussian and non-Gaussian components, where the non-Gaussian component is a (possibly) infinite weighted sum of centred chi-squared random variables with the weights determined by the spectral properties of a graphon derived from $W$. Our proofs use the asymptotic theory of generalised $U$-statistics developed by Janson and Nowicki [22]. We also investigate the structure of $H$-regular graphons for which either the Gaussian or the non-Gaussian component of the limiting distribution (but not both) is degenerate. Interestingly, there are also $H$-regular graphons $W$ for which both the Gaussian or the non-Gaussian components are degenerate, that is, $X_n(H, W)$ has a degenerate limit even under the scaling $n^{|V(H)|-1}$. We give an example of this degeneracy with $H=K_{1, 3}$ (the 3-star) and also establish non-degeneracy in a few examples. This naturally leads to interesting open questions on higher order degeneracies.