We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a general weighted graph (with possible self-loops) on $n$ vertices and $\lambda _1,\lambda _2,\ldots ,\lambda _n$ be its eigenvalues. The Estrada index of $G$ is a graph invariant defined as $EE=\sum _{i=1}^ne^{\lambda _i}$. We present a generic expression for $EE$ based on weights of short closed walks in $G$. We establish lower and upper bounds for $EE$in terms of low-order spectral moments involving the weights of closed walks. A concrete example of calculation is provided.
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok in [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp.75 (2006), 1449–1466]. For a given polytope 𝔭 with facets parallel to rational hyperplanes and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope 𝔭 parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step-polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.
We present and investigate a general model for inhomogeneous random digraphs with labeled vertices, where the arcs are generated independently, and the probability of inserting an arc depends on the labels of its endpoints and on its orientation. For this model, the critical point for the emergence of a giant component is determined via a branching process approach.
The chromatic polynomial P(G,λ) gives the number of ways a graph G can be properly coloured in at most λ colours. This polynomial has been extensively studied in both combinatorics and statistical physics, but there has been little work on its algebraic properties. This paper reports a systematic study of the Galois groups of chromatic polynomials. We give a summary of the Galois groups of all chromatic polynomials of strongly non-clique-separable graphs of order at most 10 and all chromatic polynomials of non-clique-separable θ-graphs of order at most 19. Most of these chromatic polynomials have symmetric Galois groups. We give five infinite families of graphs: one of these families has chromatic polynomials with a dihedral Galois group and two of these families have chromatic polynomials with cyclic Galois groups. This includes the first known infinite family of graphs that have chromatic polynomials with the cyclic Galois group of order 3.
We find the joint distribution of the lengths of the shortest paths from a specified node to all other nodes in a network in which the edge lengths are assumed to be independent heterogeneous exponential random variables. We also give an efficient way to simulate these lengths that requires only one generated exponential per node, as well as efficient procedures to use the simulated data to estimate quantities of the joint distribution.
We prove that a stochastic process of pure coagulation has at any time t ≥ 0 a time-dependent Gibbs distribution if and only if the rates ψ(i, j) of single coagulations are of the form ψ(i; j) = if(j) + jf(i), where f is an arbitrary nonnegative function on the set of positive integers. We also obtain a recurrence relation for weights of these Gibbs distributions that allow us to derive the general form of the solution and the explicit solutions in three particular cases of the function f. For the three corresponding models, we study the probability of coagulation into one giant cluster by time t > 0.
We study a class of tenable, irreducible, nondegenerate zero-balanced Pólya urn schemes. We give a full characterization of the class by sufficient and necessary conditions. Only forms with a certain cyclic structure in their replacement matrix are admissible. The scheme has a steady state into proportions governed by the principal (left) eigenvector of the average replacement matrix. We study the gradual change for any such urn containing n → ∞ balls from the initial condition to the steady state. We look at the status of an urn starting with an asymptotically positive proportion of each color after jn draws. We identify three phases of jn: the growing sublinear, the linear, and the superlinear. In the growing sublinear phase the number of balls of different colors has an asymptotic joint multivariate normal distribution, with mean and covariance structure that are influenced by the initial conditions. In the linear phase a different multivariate normal distribution kicks in, in which the influence of the initial conditions is attenuated. The steady state is not a good approximation until a certain superlinear amount of time has elapsed. We give interpretations for how the results in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all manifestations of one master theorem. The results are obtained via multivariate martingale theory. We conclude with some illustrating examples.
The bipartite divisor graph B(X), for a set Xof positive integers, and some of its properties have recently been studied. We construct the bipartite divisor graph for the product of subsets of positive integers and investigate some of its properties. We also give some applications in group theory.
We raise and investigate the following problem which one can regard as a very close relative of the densest sphere packing problem. If the Euclidean 3-space is partitioned into convex cells each containing a unit ball, how should the shapes of the cells be designed to minimize the average surface area of the cells? In particular, we prove that the average surface area in question is always at least
We compute the quiver of any finite monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO) to representation-theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of ℛ-trivial monoids, we also provide a semigroup-theoretic description of the projective indecomposable modules and compute the Cartan matrix.
Let G be a finite connected graph of order n, minimum degree δ and diameter d. The degree distance D′(G) of G is defined as ∑ {u,v}⊆V (G)(deg u+deg v) d(u,v), where deg w is the degree of vertex w and d(u,v) denotes the distance between u and v. In this paper, we find an asymptotically sharp upper bound on the degree distance in terms of order, minimum degree and diameter. In particular, we prove that
As a corollary, we obtain the bound D′ (G)≤n4 /(9(δ+1) )+O(n3) for a graph G of order n and minimum degree δ. This result, apart from improving on a result of Dankelmann et al. [‘On the degree distance of a graph’, Discrete Appl. Math.157 (2009), 2773–2777] for graphs of given order and minimum degree, completely settles a conjecture of Tomescu [‘Some extremal properties of the degree distance of a graph’, Discrete Appl. Math.98(1999), 159–163].
We consider a multivariate distributional recursion of sum type, as arises in the probabilistic analysis of algorithms and random trees. We prove an upper tail bound for the solution using Chernoff's bounding technique by estimating the Laplace transform. The problem is traced back to the corresponding problem for binary search trees by stochastic domination. The result obtained is applied to the internal path length and Wiener index of random b-ary recursive trees with weighted edges and random linear recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.
We show that in preferential attachment models with power-law exponent τ ∈ (2, 3) the distance between randomly chosen vertices in the giant component is asymptotically equal to (4 + o(1))log log N / (-log(τ − 2)), where N denotes the number of nodes. This is twice the value obtained for the configuration model with the same power-law exponent. The extra factor reveals the different structure of typical shortest paths in preferential attachment graphs.
The ‘coupon collection problem’ refers to a class of occupancy problems in which j identical items are distributed, independently and at random, to n cells, with no restrictions on multiple occupancy. Identifying the cells as coupons, a coupon is ‘collected’ if the cell is occupied by one or more of the distributed items; thus, some coupons may never be collected, whereas others may be collected once or twice or more. We call the number of coupons collected exactly r times coupons of type r. The coupon collection model we consider is general, in that a random number of purchases occurs at each stage of collecting a large number of coupons; the sample sizes at each stage are independent and identically distributed according to a sampling distribution. The joint behavior of the various types is an intricate problem. In fact, there is a variety of joint central limit theorems (and other limit laws) that arise according to the interrelation between the mean, variance, and range of the sampling distribution, and of course the phase (how far we are in the collection processes). According to an appropriate combination of the mean of the sampling distribution and the number of available coupons, the phase is sublinear, linear, or superlinear. In the sublinear phase, the normalization that produces a Gaussian limit law for uncollected coupons can be used to obtain a multivariate central limit law for at most two other types — depending on the rates of growth of the mean and variance of the sampling distribution, we may have a joint central limit theorem between types 0 and 1, or between types 0, 1, and 2. In the linear phase we have a multivariate central limit theorem among the types 0, 1,…, k for any fixed k.
An algebra A is said to be finitely related if the clone Clo(A) of its term operations is determined by a finite set of finitary relations. We prove that each finite idempotent semigroup satisfying the identity xyxzx≈xyzx is finitely related.
We construct and classify all groups given by triangular presentations associated to the smallest thick generalized quadrangle that act simply transitively on the vertices of hyperbolic triangular buildings of the smallest non-trivial thickness. Our classification yields 23 non-isomorphic torsion-free groups (which were obtained in an earlier work) and 168 non-isomorphic torsion groups acting on one of two possible buildings with the smallest thick generalized quadrangle as the link of each vertex. In analogy with the case, we find both torsion and torsion-free groups acting on the same building.
We investigate the number of symmetric matrices of nonnegative integers with zero diagonal such that each row sum is the same. Equivalently, these are zero-diagonal symmetric contingency tables with uniform margins, or loop-free regular multigraphs. We determine the asymptotic value of this number as the size of the matrix tends to infinity, provided the row sum is large enough. We conjecture that one form of our answer is valid for all row sums. An example appears in Figure 1.
Given two independent Poisson point processes Φ(1), Φ(2) in , the AB Poisson Boolean model is the graph with the points of Φ(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Φ(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ≥ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and τn in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.
We consider a stochastic SIR (susceptible → infective → removed) epidemic model with several types of individuals. Infectious individuals can make infectious contacts on two levels, within their own ‘household’ and with their neighbours in a random graph representing additional social contacts. This random graph is an extension of the well-known configuration model to allow for several types of individuals. We give a strong approximation theorem which leads to a threshold theorem for the epidemic model and a method for calculating the probability of a major outbreak given few initial infectives. A multitype analogue of a theorem of Ball, Sirl and Trapman (2009) heuristically motivates a method for calculating the expected size of such a major outbreak. We also consider vaccination and give some short numerical illustrations of our results.