We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a random graph, counts for the number of vertices with given degrees will typically be dependent. We show via a multivariate normal and a Poisson process approximation that, for graphs which have independent edges, with a possibly inhomogeneous distribution, only when the degrees are large can we reasonably approximate the joint counts as independent. The proofs are based on Stein's method and the Stein-Chen method with a new size-biased coupling for such inhomogeneous random graphs, and, hence, bounds on the distributional distance are obtained. Finally, we illustrate that apparent (pseudo-)power-law-type behaviour can arise in such inhomogeneous networks despite not actually following a power-law degree distribution.
For n≥5, let T′n denote the unique tree on n vertices with Δ(T′n)=n−2, and let T*n=(V,E) be the tree on n vertices with V ={v0,v1,…,vn−1} and E={v0v1,…,v0vn−3,vn−3vn−2,vn−2vn−1}. In this paper, we evaluate the Ramsey numbers r(Gm,T′n)and r(Gm,T*n) , where Gm is a connected graph of order m. As examples, for n≥8we have r(T′n,T*n)=r(T*n,T*n)=2n−5 , for n>m≥7we have r(K1,m−1,T*n)=m+n−3or m+n−4according to whether m−1∣n−3or m−1∤n−3 , and for m≥7and n≥(m−3)2 +2we have r(T*m,T*n)=m+n−3or m+n−4according to whether m−1∣n−3or m−1∤n−3 .
Let G be a graph of order n, and let a and b be two integers with 1≤a≤b. Let h:E(G)→[0,1] be a function. If a≤∑ e∋xh(e)≤b holds for any x∈V (G), then we call G[Fh]a fractional [a,b] -factor of G with indicator function h, where Fh ={e∈E(G):h(e)>0}. A graph G is fractional independent-set-deletable [a,b] -factor-critical (in short, fractional ID-[a,b] -factor-critical) if G−I has a fractional [a,b] -factor for every independent set I of G. In this paper, it is proved that if n≥((a+2b)(a+b−2)+1 )/b and δ(G)≥((a+b)n )/(a+2b ) , then G is fractional ID-[a,b] -factor-critical. This result is best possible in some sense, and it is an extension of Chang, Liu and Zhu’s previous result.
We consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.
We investigate the Zagreb index, one of the topological indices, of random recursive trees in this paper. Through a recurrence equation, the first two moments of Zn, the Zagreb index of a random recursive tree of size n, are obtained. We also show that the random process {Zn − E[Zn], n ≥ 1} is a martingale. Then the asymptotic normality of the Zagreb index of a random recursive tree is given by an application of the martingale central limit theorem. Finally, two other topological indices are also discussed in passing.
Limit theorems are established for some functionals of the distances between two nodes in weighted random b-ary recursive trees. We consider the depth of the nth node and of a random node, the distance between two random nodes, the internal path length, and the Wiener index. As an application, these limit results imply, by an imbedding argument, corresponding limit theorems for further classes of random trees: plane-oriented recursive trees and random linear recursive trees.
We prove the conjecture formulated in Litvak and Ejov (2009), namely, that the trace of the fundamental matrix of a singularly perturbed Markov chain that corresponds to a stochastic policy feasible for a given graph is minimised at policies corresponding to Hamiltonian cycles.
Tessellations of R3 that use convex polyhedral cells to fill the space can be extremely complicated. This is especially so for tessellations which are not ‘facet-to-facet’, that is, for those where the facets of a cell do not necessarily coincide with the facets of that cell's neighbours. Adjacency concepts between neighbouring cells (or between neighbouring cell elements) are not easily formulated when facets do not coincide. In this paper we make the first systematic study of these topological relationships when a tessellation of R3 is not facet-to-facet. The results derived can also be applied to the simpler facet-to-facet case. Our study deals with both random tessellations and deterministic ‘tilings’. Some new theory for planar tessellations is also given.
Let G be a graph of order n, and let k≥1 be an integer. Let h:E(G)→[0,1] be a function. If ∑ e∋xh(e)=k holds for any x∈V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh ={e∈E(G):h(e)>0}. A graph G is called a fractional (k,m) -deleted graph if for every e∈E(H) , there exists a fractional k-factor G[Fh ]of G with indicator function h such that h(e)=0 , where H is any subgraph of G with m edges. The minimum degree of a vertex in G is denoted by δ(G) . For X⊆V (G), NG(X)=⋃ x∈XNG(x) . The binding number of G is defined by In this paper, it is proved that if then G is a fractional (k,m) -deleted graph. Furthermore, it is shown that this result is best possible in some sense.
In this paper we present a combinatorial proof of an identity involving the two kinds of Stirling numbers and the numbers of permutations with prescribed numbers of excedances and cycles. Several recurrence relations related to the numbers of excedances, fixed points and cycles are also obtained.
In two recent papers, Albrecht and White [‘Counting paths in a grid’, Austral. Math. Soc. Gaz.35 (2008), 43–48] and Hirschhorn [‘Comment on “Counting paths in a grid”’, Austral. Math. Soc. Gaz.36 (2009), 50–52] considered the problem of counting the total number Pm,n of certain restricted lattice paths in an m×n grid of cells, which appeared in the context of counting train paths through a rail network. Here we give a precise study of the asymptotic behaviour of these numbers for the square grid, extending the results of Hirschhorn, and furthermore provide an asymptotic equivalent of these numbers for a rectangular grid with a constant proportion α=m/n between the side lengths.
Let G be a connected simple graph. The degree distance of G is defined as D′(G)=∑ u∈V (G)dG(u)DG(u), where DG(u) is the sum of distances between the vertex u and all other vertices in G and dG(u) denotes the degree of vertex u in G. In contrast to many established results on extremal properties of degree distance, few results in the literature deal with the degree distance of composite graphs. Towards closing this gap, we study the degree distance of some composite graphs here. We present explicit formulas for D′ (G)of three composite graphs, namely, double graphs, extended double covers and edge copied graphs.
In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3. Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
Let β>1 be a real number, and let {ak} be an unbounded sequence of positive integers such that ak+1/ak≤β for all k≥1. The following result is proved: if n is an integer with n>(1+1/(2β))a1 and A is a subset of {0,1,…,n} with , then (A+A)∩(A−A)contains a term of {ak }. The lower bound for |A| is optimal. Beyond these, we also prove that if n≥3is an integer and A is a subset of {0,1,…,n} with , then (A+A)∩(A−A)contains a power of 2. Furthermore, cannot be improved.
Pooling designs are a very helpful tool for reducing the number of tests for DNA library screening. A disjunct matrix is usually used to represent the pooling design. In this paper, we construct a new family of disjunct matrices and prove that it has a good row to column ratio and error-tolerant property.
An ergodic Markov chain is proved to be the realization of a random walk in a directed graph subject to a synchronizing road coloring. The result ensures the existence of appropriate random mappings in Propp-Wilson's coupling from the past. The proof is based on the road coloring theorem. A necessary and sufficient condition for approximate preservation of entropies is also given.
The Möbius inversion formula for a locally finite partially ordered set is realized as a Lagrange inversion formula. Schauder bases are introduced to interpret Möbius inversion.
In this paper, we use the product ⊗h in order to study super edge-magic labelings, bi-magic labelings and optimal k-equitable labelings. We establish, with the help of the product ⊗h, new relations between super edge-magic labelings and optimal k-equitable labelings and between super edge-magic labelings and edge bi-magic labelings. We also introduce new families of graphs that are inspired by the family of generalized Petersen graphs. The concepts of super bi-magic and r-magic labelings are also introduced and discussed, and open problems are proposed for future research.
A super edge-magic labeling of a graph G=(V,E) of order p and size q is a bijection f:V ∪E→{i}p+qi=1 such that: (1) f(u)+f(uv)+f(v)=k for all uv∈E; and (2) f(V )={i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv∈E(G) , u′,v′ ∈V (G)and dG (u,u′ )=dG (v,v′ )<+∞, then f(u)+f(v)=f(u′ )+f(v′ ).In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic labelings of these unions. The case when G is not acyclic will be also considered.