To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study branching multiplicity spaces of complex classical groups in terms of ${\mathrm{GL} }_{2} $ representations. In particular, we show how combinatorics of ${\mathrm{GL} }_{2} $ representations are intertwined to make branching rules under the restriction of ${\mathrm{GL} }_{n} $ to ${\mathrm{GL} }_{n- 2} $. We also discuss analogous results for the symplectic and orthogonal groups.
In a recent paper of Ellenberg, Oberlin, and Tao [The Kakeya set and maximal conjectures for algebraic varieties over finite fields. Mathematika56 (2010), 1–25], the authors asked whether there are Besicovitch phenomena in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. In this paper, we answer their question in the affirmative by explicitly constructing a Kakeya set of measure zero in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{n} $. Furthermore, we prove that any Kakeya set in ${ \mathbb{F} }_{q} \mathop{[[t] ] }\nolimits ^{2} $ or ${ \mathbb{Z} }_{p}^{2} $ is of Minkowski dimension 2.
We generalise an argument of Leader, Russell, and Walters to show that almost all sets of $d+ 2$ points on the $(d- 1)$-sphere ${S}^{d- 1} $ are not contained in a transitive set in some ${\mathbf{R} }^{n} $.
A graph $\mit{\Gamma} $ is called $1$-regular if $ \mathsf{Aut} \mit{\Gamma} $ acts regularly on its arcs. In this paper, a classification of $1$-regular Cayley graphs of valency $7$ is given; in particular, it is proved that there is only one core-free graph up to isomorphism.
For positive integers $p$ and $q$, let ${ \mathcal{G} }_{p, q} $ be a class of graphs such that $\vert E(G)\vert \leq p\vert V(G)\vert - q$ for every $G\in { \mathcal{G} }_{p, q} $. In this paper, we consider the sum of the $k\mathrm{th} $ powers of the degrees of the vertices of a graph $G\in { \mathcal{G} }_{p, q} $ with $\Delta (G)\geq 2p$. We obtain an upper bound for this sum that is linear in ${\Delta }^{k- 1} $. These graphs include the planar, 1-planar, $t$-degenerate, outerplanar, and series-parallel graphs.
The almost-sure connectivity of the Euclidean minimal spanning forest MSF(X) on a homogeneous Poisson point process X ⊂ ℝd is an open problem for dimension d>2. We introduce a descending family of graphs (Gn)n≥2 that can be seen as approximations to the MSF in the sense that MSF(X)=∩n=2∞Gn(X). For n=2, one recovers the relative neighborhood graph or, in other words, the β-skeleton with β=2. We show that almost-sure connectivity of Gn(X) holds for all n≥2, all dimensions d≥2, and also point processes X more general than the homogeneous Poisson point process. In particular, we show that almost-sure connectivity holds if certain continuum percolation thresholds are strictly positive or, more generally, if almost surely X does not admit generalized descending chains.
We investigate the ray-length distributions for two different rectangular versions of Gilbert's tessellation (see Gilbert (1967)). In the full rectangular version, lines extend either horizontally (east- and west-growing rays) or vertically (north- and south-growing rays) from seed points which form a Poisson point process, each ray stopping when another ray is met. In the half rectangular version, east- and south-growing rays do not interact with west and north rays. For the half rectangular tessellation, we compute analytically, via recursion, a series expansion for the ray-length distribution, whilst, for the full rectangular version, we develop an accurate simulation technique, based in part on the stopping-set theory for Poisson processes (see Zuyev (1999)), to accomplish the same. We demonstrate the remarkable fact that plots of the two distributions appear to be identical when the intensity of seeds in the half model is twice that in the full model. In this paper we explore this coincidence, mindful of the fact that, for one model, our results are from a simulation (with inherent sampling error). We go on to develop further analytic theory for the half-Gilbert model using stopping-set ideas once again, with some novel features. Using our theory, we obtain exact expressions for the first and second moments of the ray length in the half-Gilbert model. For all practical purposes, these results can be applied to the full-Gilbert model—as much better approximations than those provided by Mackisack and Miles (1996).
We consider a code to be a subset of the vertex set of a Hamming graph. We examine elusive pairs, code-group pairs where the code is not determined by knowledge of its set of neighbours. We construct a new infinite family of elusive pairs, where the group in question acts transitively on the set of neighbours of the code. In these examples, the alphabet size always divides the length of the code. We show that there is no elusive pair for the smallest set of parameters that does not satisfy this condition. We also pose several questions regarding elusive pairs.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
We prove an upper bound on sums of squares of minors of $\{+1, -1\}$-matrices. The bound is sharp for Hadamard matrices, a result due to de Launey and Levin [‘$(1,-1)$-matrices with near-extremal properties’, SIAM J. Discrete Math.23(2009), 1422–1440], but our proof is simpler. We give several corollaries relevant to minors of Hadamard matrices.
In this short paper, we show that, with three exceptions, if the Wiener index of a connected graph of order $n$ is at most $(n+ 5)(n- 2)/ 2$, then it is traceable.
We construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a full-rank exchange matrix, such as principal coefficients.
After summarizing from previous papers the definitions of the concepts associated with nets, i.e. triples of 6-transpositions in the Monster up to braiding, we give some results.
Rooted monounary algebras can be considered as an algebraic counterpart of directed rooted trees. We work towards a characterization of the lattice of compatible quasiorders by describing its join- and meet-irreducible elements. We introduce the limit $\cB _\infty $ of all $d$-dimensional Boolean cubes $\Two ^d$ as a monounary algebra; then the natural order on $\Two ^d$ is meet-irreducible. Our main result is that any completely meet-irreducible quasiorder of a rooted algebra is a homomorphic preimage of the natural partial order (or its inverse) of a suitable subalgebra of $\cB _\infty $. For a partial order, it is known that complete meet-irreducibility means that the corresponding partially ordered structure is subdirectly irreducible. For a rooted monounary algebra it is shown that this property implies that the unary operation has finitely many nontrivial kernel classes and its graph is a binary tree.
Consider a random graph where the mean degree is given and fixed. In this paper we derive the maximal size of the largest connected component in the graph. We also study the related question of the largest possible outbreak size of an epidemic occurring ‘on’ the random graph (the graph describing the social structure in the community). More precisely, we look at two different classes of random graphs. First, the Poissonian random graph in which each node i is given an independent and identically distributed (i.i.d.) random weight Xi with E(Xi)=µ, and where there is an edge between i and j with probability 1-e-XiXj/(µ n), independently of other edges. The second model is the thinned configuration model in which the n vertices of the ground graph have i.i.d. ground degrees, distributed as D, with E(D) = µ. The graph of interest is obtained by deleting edges independently with probability 1-p. In both models the fraction of vertices in the largest connected component converges in probability to a constant 1-q, where q depends on X or D and p. We investigate for which distributions X and D with given µ and p, 1-q is maximized. We show that in the class of Poissonian random graphs, X should have all its mass at 0 and one other real, which can be explicitly determined. For the thinned configuration model, D should have all its mass at 0 and two subsequent positive integers.
We prove a conjecture of Kontsevich, which asserts that the iterations of the non-commutative rational map Fr:(x,y)→(xyx−1,(1+yr)x−1) are given by non-commutative Laurent polynomials with non-negative integer coefficients.
Let $R$ be a commutative ring. The regular digraph of ideals of $R$, denoted by $\Gamma (R)$, is a digraph whose vertex set is the set of all nontrivial ideals of $R$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$ whenever $I$ contains a nonzero divisor on $J$. In this paper, we study the connectedness of $\Gamma (R)$. We also completely characterise the diameter of this graph and determine the number of edges in $\Gamma (R)$, whenever $R$ is a finite direct product of fields. Among other things, we prove that $R$ has a finite number of ideals if and only if $\mathrm {N}_{\Gamma (R)}(I)$ is finite, for all vertices $I$ in $\Gamma (R)$, where $\mathrm {N}_{\Gamma (R)}(I)$ is the set of all adjacent vertices to $I$ in $\Gamma (R)$.
Let $G$ be a general weighted graph (with possible self-loops) on $n$ vertices and $\lambda _1,\lambda _2,\ldots ,\lambda _n$ be its eigenvalues. The Estrada index of $G$ is a graph invariant defined as $EE=\sum _{i=1}^ne^{\lambda _i}$. We present a generic expression for $EE$ based on weights of short closed walks in $G$. We establish lower and upper bounds for $EE$in terms of low-order spectral moments involving the weights of closed walks. A concrete example of calculation is provided.
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok in [Computing the Ehrhart quasi-polynomial of a rational simplex. Math. Comp.75 (2006), 1449–1466]. For a given polytope 𝔭 with facets parallel to rational hyperplanes and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope 𝔭 parallel to the subspace L and sum up the integrals. We first develop an algorithmic theory of parametric intermediate generating functions. Then we study the Ehrhart theory of these intermediate sums, that is, the dependence of the result as a function of a dilation of the polytope. We provide an algorithm to compute the resulting Ehrhart quasi-polynomials in the form of explicit step-polynomials. These formulas are naturally valid for real (not just integer) dilations and thus provide a direct approach to real Ehrhart theory.