We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss n4 configurations of n points and n planes in three-dimensional projective space. These have four points on each plane, and four planes through each point. When the last of the 4n incidences between points and planes happens as a consequence of the preceding 4n−1 the configuration is called a ‘theorem’. Using a graph-theoretic search algorithm we find that there are two 84 and one 94 ‘theorems’. One of these 84 ‘theorems’ was already found by Möbius in 1828, while the 94 ‘theorem’ is related to Desargues’ ten-point configuration. We prove these ‘theorems’ by various methods, and connect them with other questions, such as forbidden minors in graph theory, and sets of electrons that are energy minimal.
We construct the Schubert basis of the torus-equivariant K-homology of the affine Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson in equivariant homology. For the case where G=SLn, the K-homology of the affine Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions. The Schubert basis is represented by inhomogeneous symmetric functions, calledK-k-Schur functions, whose highest-degree term is a k-Schur function. The dual basis in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our constructions have geometric interpretations by means of Kashiwara’s thick affine flag manifold.
Let G be a graph, and k a positive integer. Let h:E(G)→[0,1] be a function. If ∑ e∋xh(e)=k holds for each x∈V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh={e∈E(G)∣h(e)>0}. In this paper we use neighbourhoods to obtain a new sufficient condition for a graph to have a fractional k-factor. Furthermore, this result is shown to be best possible in some sense.
In this paper, compositions of a natural number are studied. The number of restricted compositions is given in a closed form, and some applications are presented.
Colmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a -representation W of by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W) explicitly and we prove that if W is irreducible and dim (W)=2, then Ω(W) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.
It is well known that a tournament (complete oriented graph) on n vertices has at most directed triangles, and that the constant is best possible. Motivated by some geometric considerations, our aim in this paper is to consider some “higher order” versions of this statement. For example, if we give each 3-set from an n-set a cyclic ordering, then what is the greatest number of “directed 4-sets” we can have? We give an asymptotically best possible answer to this question, and give bounds in the general case when we orient each d-set from an n-set.
We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley–Wilf limit) at least λ≈2.48187, the unique real root of x5−2x4−2x2−2x−1, thereby establishing a conjecture of Albert and Linton.
Let Kn denote the number of types of a sample of size n taken from an exchangeable coalescent process (Ξ-coalescent) with mutation. A distributional recursion for the sequence (Kn)n∈ℕ is derived. If the coalescent does not have proper frequencies, i.e. if the characterizing measure Ξ on the infinite simplex Δ does not have mass at 0 and satisfies ∫Δ ∣x∣Ξ(dx)/(x,x)<∞, where ∣x∣:=∑i=1∞xi and (x,x)≔∑i=1∞xi2 for x=(x1,x2,…)∈Δ, then Kn/n converges weakly as n→∞ to a limiting variable K that is characterized by an exponential integral of the subordinator associated with the coalescent process. For so-called simple measures Ξ satisfying ∫ΔΞ(d x)/(x,x)<∞, we characterize the distribution of K via a fixed-point equation.
In this paper we focus on the problem of the degree sequence for a random graph process with edge deletion. We prove that, while a specific parameter varies, the limit degree distribution of the model exhibits critical phenomenon.
For a class of ‘linear’ sudoku solutions, we construct mutually orthogonal families of maximal size for all square orders, and we show that all such solutions must lie in the same orbit of a symmetry group preserving sudoku solutions.
The probability that two randomly selected phylogenetic trees of the same size are isomorphic is found to be asymptotic to a decreasing exponential modulated by a polynomial factor. The number of symmetrical nodes in a random phylogenetic tree of large size obeys a limiting Gaussian distribution, in the sense of both central and local limits. The probability that two random phylogenetic trees have the same number of symmetries asymptotically obeys an inverse square-root law. Precise estimates for these problems are obtained by methods of analytic combinatorics, involving bivariate generating functions, singularity analysis, and quasi-powers approximations.
We situate the noncrossing partitions associated with a finite Coxeter group within the context of the representation theory of quivers. We describe Reading’s bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated with a finite Coxeter group form a lattice. We also prove some new results within the theory of quiver representations. We show that the finitely generated, exact abelian, and extension-closed subcategories of the representations of a quiver Q without oriented cycles are in natural bijection with the cluster tilting objects in the associated cluster category. We also show that these subcategories are exactly the finitely generated categories that can be obtained as the semistable objects with respect to some stability condition.
For three points , and in the n-dimensional space 𝔽nq over the finite field 𝔽q of q elements we give a natural interpretation of an acute angle triangle defined by these points. We obtain an upper bound on the size of a set 𝒵 such that all triples of distinct points define acute angle triangles. A similar question in the real space ℛn dates back to P. Erdős and has been studied by several authors.
Let p be a prime. We say that a transitive action of a group L on a set Ω is p-sub-regular if there exist x,y∈Ω such that 〈Lx,Ly〉=L and LYx≅ℤp, where Y =yLx is the orbit of y under Lx. Our main result is that if Γ is a G-arc-transitive graph and the permutation group induced by the action of Gv on Γ(v) is p-sub-regular, then the order of a G-arc-stabilizer is equal to ps−1 where s≤7, s≠6, and moreover, if p=2, then s≤5. This generalizes a classical result of Tutte on cubic arc-transitive graphs as well as some more recent results. We also give a characterization of p-sub-regular actions in terms of arc-regular actions on digraphs and discuss some interesting examples of small degree.
In this paper we consider a stochastic SIR (susceptible→infective→removed) epidemic model in which individuals may make infectious contacts in two ways, both within ‘households’ (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly sized finite populations. The extension to unequal-sized households is discussed briefly.
Large deviation principles and related results are given for a class of Markov chains associated to the ‘leaves' in random recursive trees and preferential attachment random graphs, as well as the ‘cherries’ in Yule trees. In particular, the method of proof, combining analytic and Dupuis–Ellis-type path arguments, allows for an explicit computation of the large deviation pressure.
Let G be a simple undirected graph. The energy E(G) of G is the sum of the absolute values of the eigenvalues of the adjacent matrix of G, and the Hosoya index Z(G) of G is the total number of matchings in G. A tree is called a nonconjugated tree if it contains no perfect matching. Recently, Ou [‘Maximal Hosoya index and extremal acyclic molecular graphs without perfect matching’, Appl. Math. Lett.19 (2006), 652–656] determined the unique element which is maximal with respect to Z(G) among the family of nonconjugated n-vertex trees in the case of even n. In this paper, we provide a counterexample to Ou’s results. Then we determine the unique maximal element with respect to E(G) as well as Z(G) among the family of nonconjugated n-vertex trees for the case when n is even. As corollaries, we determine the maximal element with respect to E(G) as well as Z(G) among the family of nonconjugated chemical trees on n vertices, when n is even.