To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A set A of positive integers is a Bh-set if all the sums of the form a1 + . . . + ah, with a1,. . .,ah ∈ A and a1 ⩽ . . . ⩽ ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,. . .,n}. As a consequence of our results, we address a problem of Cameron and Erdős (1990) in the context of Bh-sets. We also use these results to estimate the maximum size of a Bh-sets contained in a typical (random) subset of [n] with a given cardinality.
A random k-out mapping (digraph) on [n] is generated by choosing k random images of each vertex one at a time, subject to a 'preferential attachment' rule: the current vertex selects an image i with probability proportional to a given parameter α = α(n) plus the number of times i has already been selected. Intuitively, the larger α becomes, the closer the resulting k-out mapping is to the uniformly random k-out mapping. We prove that α = Θ(n1/2) is the threshold for α growing 'fast enough' to make the random digraph approach the uniformly random digraph in terms of the total variation distance. We also determine an exact limit for this distance for the α = βn1/2 case.
We consider the number of spanning trees in circulant graphs of ${\it\beta}n$ vertices with generators depending linearly on $n$. The matrix tree theorem gives a closed formula of ${\it\beta}n$ factors, while we derive a formula of ${\it\beta}-1$ factors. We also derive a formula for the number of spanning trees in discrete tori. Finally, we compare the spanning tree entropy of circulant graphs with fixed and nonfixed generators.
We examine the tail distributions of integer partition ranks and cranks by investigating tail moments, which are analogous to the positive moments introduced by Andrews et al. [‘The odd moments of ranks and cranks’, J. Combin. Theory Ser. A120(1) (2013), 77–91].
A family of sets is called union-closed if whenever A and B are sets of the family, so is A ∪ B. The long-standing union-closed conjecture states that if a family of subsets of [n] is union-closed, some element appears in at least half the sets of the family. A natural weakening is that the union-closed conjecture holds for large families, that is, families consisting of at least p02n sets for some constant p0. The first result in this direction appears in a recent paper of Balla, Bollobás and Eccles [1], who showed that union-closed families of at least $\tfrac{2}{3}$2n sets satisfy the conjecture; they proved this by determining the minimum possible average size of a set in a union-closed family of given size. However, the methods used in that paper cannot prove a better constant than $\tfrac{2}{3}$. Here, we provide a stability result for the main theorem of [1], and as a consequence we prove the union-closed conjecture for families of at least ($\tfrac{2}{3}$ − c)2n sets, for a positive constant c.
We give an easy method for constructing containers for simple hypergraphs. The method also has consequences for non-simple hypergraphs. Some applications are given; in particular, a very transparent calculation is offered for the number of H-free hypergraphs, where H is some fixed uniform hypergraph.
We consider ‘unconstrained’ random k-XORSAT, which is a uniformly random system of m linear non-homogeneous equations in $\mathbb{F}$2 over n variables, each equation containing k ⩾ 3 variables, and also consider a ‘constrained’ model where every variable appears in at least two equations. Dubois and Mandler proved that m/n = 1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analysed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT.
We show that m/n = 1 remains a sharp threshold for satisfiability of constrained k-XORSAT for every k ⩾ 3, and we use standard results on the 2-core of a random k-uniform hypergraph to extend this result to find the threshold for unconstrained k-XORSAT. For constrained k-XORSAT we narrow the phase transition window, showing that m − n → −∞ implies almost-sure satisfiability, while m − n → +∞ implies almost-sure unsatisfiability.
We study 3-random-like graphs, that is, sequences of graphs in which the densities of triangles and anti-triangles converge to 1/8. Since the random graph $\mathcal{G}$n,1/2 is, in particular, 3-random-like, this can be viewed as a weak version of quasi-randomness. We first show that 3-random-like graphs are 4-universal, that is, they contain induced copies of all 4-vertex graphs. This settles a question of Linial and Morgenstern [10]. We then show that for larger subgraphs, 3-random-like sequences demonstrate completely different behaviour. We prove that for every graph H on n ⩾ 13 vertices there exist 3-random-like graphs without an induced copy of H. Moreover, we prove that for every ℓ there are 3-random-like graphs which are ℓ-universal but not m-universal when m is sufficiently large compared to ℓ.
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
A companion basis for a quiver Γ mutation equivalent to a simply-laced Dynkin quiver is a subset of the associated root system which is a $\mathbb{Z}$-basis for the integral root lattice with the property that the non-zero inner products of pairs of its elements correspond to the edges in the underlying graph of Γ. It is known in type A (and conjectured for all simply-laced Dynkin cases) that any companion basis can be used to compute the dimension vectors of the finitely generated indecomposable modules over the associated cluster-tilted algebra. Here, we present a procedure for explicitly constructing a companion basis for any quiver of mutation type A or D.
We consider the Jack–Laurent symmetric functions for special values of parameters p0=n+k−1m, where k is not rational and m and n are natural numbers. In general, the coefficients of such functions may have poles at these values of p0. The action of the corresponding algebra of quantum Calogero–Moser integrals $\mathcal{D}$(k, p0) on the space of Laurent symmetric functions defines the decomposition into generalised eigenspaces. We construct a basis in each generalised eigenspace as certain linear combinations of the Jack–Laurent symmetric functions, which are regular at p0=n+k−1m, and describe the action of $\mathcal{D}$(k, p0) in these eigenspaces.
Consider a simple Lie algebra $\mathfrak{g}$ and $\overline{\mathfrak{g}}$ ⊂ $\mathfrak{g}$ a Levi subalgebra. Two irreducible $\overline{\mathfrak{g}}$-modules yield isomorphic inductions to $\mathfrak{g}$ when their highest weights coincide up to conjugation by an element of the Weyl group W of $\mathfrak{g}$ which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$. In this paper, we study the converse problem: given two irreducible $\overline{\mathfrak{g}}$-modules of highest weight μ and ν whose inductions to $\mathfrak{g}$ are isomorphic, can we conclude that μ and ν are conjugate under the action of an element of W which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$? We conjecture this is true in general. We prove this conjecture in type A and, for the other root systems, in various situations providing μ and ν satisfy additional hypotheses. Our result can be interpreted as an analogue for branching coefficients of the main result of Rajan [6] on tensor product multiplicities.
Let $\text{pod}_{-4}(n)$ denote the number of partition quadruples of $n$ where the odd parts in each partition are distinct. We find many arithmetic properties of $\text{pod}_{-4}(n)$ including the following infinite family of congruences: for any integers ${\it\alpha}\geq 1$ and $n\geq 0$,
In 1981 Beck and Fiala proved an upper bound for the discrepancy of a set system of degree d that is independent of the size of the ground set. In the intervening years the bound has been decreased from 2d − 2 to 2d − 4. We improve the bound to 2d − log*d.
The Teter, Payne, and Allan “preconditioning” function plays a significant role in planewave DFT calculations. This function is often called the TPA preconditioner. We present a detailed study of this “preconditioning” function. We develop a general formula that can readily generate a class of “preconditioning” functions. These functions have higher order approximation accuracy and fulfill the two essential “preconditioning” purposes as required in planewave DFT calculations. Our general class of functions are expected to have applications in other areas.
The discrete Green's function (without boundary) $\mathbb{G}$ is a pseudo-inverse of the combinatorial Laplace operator of a graph G = (V, E). We reveal the intimate connection between Green's function and the theory of exact stopping rules for random walks on graphs. We give an elementary formula for Green's function in terms of state-to-state hitting times of the underlying graph. Namely,$\mathbb{G}(i,j) = \pi_j \bigl( H(\pi,j) - H(i,j) \bigr),$ where πi is the stationary distribution at vertex i, H(i, j) is the expected hitting time for a random walk starting from vertex i to first reach vertex j, and H(π, j) = ∑k∈V πkH(k, j). This formula also holds for the digraph Laplace operator.
The most important characteristics of a stopping rule are its exit frequencies, which are the expected number of exits of a given vertex before the rule halts the walk. We show that Green's function is, in fact, a matrix of exit frequencies plus a rank one matrix. In the undirected case, we derive spectral formulas for Green's function and for some mixing measures arising from stopping rules. Finally, we further explore the exit frequency matrix point of view, and discuss a natural generalization of Green's function for any distribution τ defined on the vertex set of the graph.
We consider large random graphs with prescribed degrees, as generated by the configuration model. In the regime where the empirical degree distribution approaches a limit μ with finite mean, we establish the systematic convergence of a broad class of graph parameters that includes the independence number, the maximum cut size, the logarithm of the Tutte polynomial, and the free energy of the anti-ferromagnetic Ising and Potts models. Contrary to previous works, our results are not a priori limited to the free energy of some prescribed graphical model. They apply more generally to any additive, Lipschitz and concave graph parameter. In addition, the corresponding limits are shown to be Lipschitz and concave in the degree distribution μ. This considerably extends the applicability of the celebrated interpolation method, introduced in the context of spin glasses, and recently related to the challenging question of right-convergence of sparse graphs.
We develop a comprehensive theory of the stable representation categories of several sequences of groups, including the classical and symmetric groups, and their relation to the unstable categories. An important component of this theory is an array of equivalences between the stable representation category and various other categories, each of which has its own flavor (representation theoretic, combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable category. We use this theory to produce a host of specific results: for example, the construction of injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and a canonical derived auto-equivalence of the general linear theory.