To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
From an integer-valued function f we obtain, in a natural way, a matroid Mf on the domain of f. We show that the class of matroids so obtained is closed under restriction, contraction, duality, truncation and elongation, but not under direct sum. We give an excluded-minor characterization of and show that consists precisely of those transversal matroids with a presentation in which the sets in the presentation are nested. Finally, we show that on an n-set there are exactly 2n members of .
The purpose of this note is to determine the automorphism group of the doubly regular tournament of Szekeres type, and to use it to show that the corresponding skew Hadamard matrix H of order 2(q + 1), where q ≡5(mod 8) and q > 5, is not equivalent to the skew Hadamard matrix H(2q + 1) of quadratic residue type when 2q + 1 is a prime power.
S. T. Hedetniemi and P. J. Slater have shown that if G is a triangle-free connected graph with at least three vertices, then
where K(G) is the clique graph of G and K2(G) = K(K(G)) is the first iterated clique graph. In this paper, we generalize the above result to a wider class of graphs.
The representation theory of Clifford algebras has been used to obtain information on the possible orders of amicable pairs of orthogonal designs on given numbers of variables. If, however, the same approach is tried on more complex systems of orthogonal designs, such as product designs and amicable triples, algebras which properly generalize the Clifford algebras are encountered. In this paper a theory of such generalizations is developed and applied to the theory of systems of orthogonal designs, and in particular to the theory of product designs.
Some generalizations of Sperner's theorem and of the LYM inequality are given to the case when A1,… At are t families of subsets of {1,…,m} such that a set in one family does not properly contain a set in another.
We determine the limiting distribution of the distance from the root of a tree to any nearest endnode of the tree (other than the root) for certain families of rooted trees.
Frames have been defined as a certain type of generalization of Room square. Frames have proven useful in the construction of Room squares, in particular, skew Room squares.
We generalize the definition of frame and consider the construction of Room squares and skew Room squares using these more general frames.
We are able to construct skew Room squares of three previously unknown sides, namely 93, 159, and 237. This reduces the number of unknown sides to four: 69, 87, 95 and 123. Also, using this construction, we are able to give a short proof of the existence of all skew Room squares of (odd) sides exceeding 123.
Finally, this frame construction is useful for constructing Room squares with subsquares. We can also construct Room squares “missing” subsquares of sides 3 and 5. The “missing” subsquares of sides 3 and 5 do not exist, so these incomplete Room squares cannot be completed to Room squares.
We show that the problem of settling the existence of an n × n Hadamard matrix, where n is divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the complete bipartite graph K n, n, such that T contains at least one circuit of each copy of K2,3 in Kn, n.
Let t, m > 2 and p > 2 be positive integers and denote by N(t, m, p) the largest integer for which there exists a t-uniform hypergraph with N (not necessarily distinct) edges and having no independent set of edges of size m and no vertex of degree exceeding p. In this paper we complete the determination of N(t, m, 3) and obtain some new bounds on N(t, 2, p).
We discuss the problem of constructing large graceful trees from smaller ones and provide a partial answer in the case of the product tree Sm {g} by way of a sample of sufficient conditions on g. Interlaced trees play an important role as building blocks in our constructions, although the resulting valuations are not always interlaced.
Let g(n, m) denote the maximal number of distinct rows in any (0, 1 )-matrix with n columns, rank < n, – 1, and all row sums equal to m. This paper determines g(n, m) in all cases:
In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2k vectors all of whose coordinates are 0 or 1.
We are interested here in the Ramsey number r(T, C), where C is a complete k-uniform hypergraph and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in some cases, to the exact value for r(T, C) and to a generalization of a theorem of Chváta1 on Ramsey numbers for graphs. In other cases we show that a determination of the exact values of r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class of Steiner systems.
Warren W. Wolfe obtained necessary conditions for the existence of orthogonal designs in terms of rational matrices. In this paper it is shown that these necessary conditions can be obtained in terms of integral matrices. In the integral form, Wolfe's theory is more useful in the construction of orthogonal designs.
Some sufficient conditions for the reconstructability of separable graphs are given proceeding along the lines suggested by Bondy, Greenwell and Hemminger. It is shown that the structure and automorphism group of a central block plays an important role in the reconstruction.
A set with a relation is isomorphic to a group quotient under the condition described as weak homogeneity, and to the quotient of a group with relation preserved by right and left translations if the homogeneity is strengthened. A method of constructing these group quotients and, furthermore, all such very homogeneous spaces, is described and an illustrative example given.
A random rooted labelled tree on n vertices has asymptotically the same shape as a branching-type process, in which each generation of a branching process with Poisson family sizes, parameter one, is supplemented by a single additional member added at random to one of the families in that generation. In this note we use this probabilistic representation to deduce the asymptotic distribution of the distance from the root to the nearest endertex other than itself.
We characterize all finite linear spaces with p ≤ n2 points where n ≥ 8 for p ≠ n2 − 1 and n ≥ 23 for p = n2−1, and the line range is {n−1, n, n+1}. All such linear spaces are shown to be embeddable in finite projective planes of order a function of n. We also describe the exceptional linear spaces arising from p < n2−1 and n ≥ 4.
Cubic Moore graphs of diameter k on 3.2k−2 vertices do not exist for k > 2. This paper exhibits the first known case of nonexistence for generalized cubic Moore graphs when the number of vertices is just less than the critical number for a Moore graph: the generalized Moore graph on 44 vertices does not exist.