To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider a reductive linear algebraic group G acting linearly on a polynomial ring S over an infinite field; key examples are the general linear group, the symplectic group, the orthogonal group, and the special linear group, with the classical representations as in Weyl’s book: For the general linear group, consider a direct sum of copies of the standard representation and copies of the dual; in the other cases, take copies of the standard representation. The invariant rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating matrices, symmetric determinantal rings and the Plücker coordinate rings of Grassmannians; these are the classical invariant rings of the title, with $S^G\subseteq S$ being the natural embedding.
Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that the invariant ring $S^G$ is a pure subring of S, equivalently, $S^G$ is a direct summand of S as an $S^G$-module. Over fields of positive characteristic, reductive groups are typically no longer linearly reductive. We determine, in the positive characteristic case, precisely when the inclusion $S^G\subseteq S$ is pure. It turns out that if $S^G\subseteq S$ is pure, then either the invariant ring $S^G$ is regular or the group G is linearly reductive.
In a 1968 issue of the Proceedings, P. M. Cohn famously claimed that a commutative domain is atomic if and only if it satisfies the ascending chain condition on principal ideals (ACCP). Some years later, a counterexample was however provided by A. Grams, who showed that every commutative domain with the ACCP is atomic, but not vice versa. This has led to the problem of finding a sensible (ideal-theoretic) characterisation of atomicity.
The question (explicitly stated on p. 3 of A. Geroldinger and F. Halter–Koch’s 2006 monograph on factorisation) is still open. We settle it here by using the language of monoids and preorders.
Using Cohen’s classification of symplectic reflection groups, we prove that the parabolic subgroups, that is, stabilizer subgroups, of a finite symplectic reflection group, are themselves symplectic reflection groups. This is the symplectic analog of Steinberg’s Theorem for complex reflection groups.
Using computational results required in the proof, we show the nonexistence of symplectic resolutions for symplectic quotient singularities corresponding to three exceptional symplectic reflection groups, thus reducing further the number of cases for which the existence question remains open.
Another immediate consequence of our result is that the singular locus of the symplectic quotient singularity associated to a symplectic reflection group is pure of codimension two.
Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunzmultiplicity.
In this paper, we prove that a classical theorem by McAdam about the analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial filtrations on a two-dimensional normal excellent local ring R, and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which is the sum of a linear polynomial and a bounded function. We prove these theorems by first studying asymptotic properties of divisors on a resolution of singularities of the spectrum of R. The filtration of the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant difference in the classical case of filtrations of powers of ideals and divisorial filtrations.
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a complete answer for both real and complex models. One consequence of our results is that almost sure boundedness of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant theory and castling transforms.
Let $f:R\to S$ be a ring homomorphism and J be an ideal of S. Then the subring $R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$ and $j\in J\}$ of $R\times S$ is called the amalgamation of R with S along J with respect to f. In this paper, we characterize when $R\bowtie ^fJ$ is a Hilbert ring. As an application, we provide an example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).
We undertake a systematic study of Lipschitz normally embedded normal complex surface germs. We prove, in particular, that the topological type of such a germ determines the combinatorics of its minimal resolution which factors through the blowup of its maximal ideal and through its Nash transform, as well as the polar curve and the discriminant curve of a generic plane projection, thus generalizing results of Spivakovsky and Bondil that were known for minimal surface singularities. In an appendix, we give a new example of a Lipschitz normally embedded surface singularity.
A number of spectrum constructions have been devised to extract topological spaces from algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative unital C*-algebra and the Hofmann–Lawson spectrum of a continuous frame.
Inspired by the examples above, we define a spectrum for localic semirings. We use arguments in the symmetric monoidal category of suplattices to prove that, under conditions satisfied by the aforementioned examples, the spectrum can be constructed as the frame of overt weakly closed radical ideals and that it reduces to the usual constructions in those cases. Our proofs are constructive.
Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in general should contain additional ‘differential’ information about the semiring.
Let $f\colon Y \to X$ be a proper flat morphism of locally noetherian schemes. Then the locus in $X$ over which $f$ is smooth is stable under generization. We prove that, under suitable assumptions on the formal fibers of $X$, the same property holds for other local properties of morphisms, even if $f$ is only closed and flat. Our proof of this statement reduces to a purely local question known as Grothendieck's localization problem. To answer Grothendieck's problem, we provide a general framework that gives a uniform treatment of previously known cases of this problem, and also solves this problem in new cases, namely for weak normality, seminormality, $F$-rationality, and the ‘Cohen–Macaulay and $F$-injective’ property. For the weak normality statement, we prove that weak normality always lifts from Cartier divisors. We also solve Grothendieck's localization problem for terminal, canonical, and rational singularities in equal characteristic zero.
Let R be an integral domain with $qf(R)=K$, and let $F(R)$ be the set of nonzero fractional ideals of R. Call R a dually compact domain (DCD) if, for each $I\in F(R)$, the ideal $I_{v}=(I^{-1})^{-1}$ is a finite intersection of principal fractional ideals. We characterize DCDs and show that the class of DCDs properly contains various classes of integral domains, such as Noetherian, Mori, and Krull domains. In addition, we show that a Schreier DCD is a greatest common divisor (GCD) (Greatest Common Divisor) domain with the property that, for each $A\in F(R)$, the ideal $A_{v}$ is principal. We show that a domain R is G-Dedekind (i.e., has the property that $A_{v}$ is invertible for each $A\in F(R)$) if and only if R is a DCD satisfying the property $\ast :$ For all pairs of subsets $\{a_{1},\ldots ,a_{m}\},\{b_{1},\ldots ,b_{n}\}\subseteq K\backslash \{0\}, (\cap _{i=1}^{m}(a_{i})(\cap _{j=1}^{n}(b_{j}))=\cap _{i,j=1}^{m,n}(a_{i}b_{j})$. We discuss what the appropriate names for G-Dedekind domains and related notions should be. We also make some observations about how the DCDs behave under localizations and polynomial ring extensions.
We show that the Specht ideal of a two-rowed partition is perfect over an arbitrary field, provided that the characteristic is either zero or bounded below by the size of the second row of the partition, and we show this lower bound is tight. We also establish perfection and other properties of certain variants of Specht ideals, and find a surprising connection to the weak Lefschetz property. Our results, in particular, give a self-contained proof of Cohen–Macaulayness of certain h-equals sets, a result previously obtained by Etingof–Gorsky–Losev over the complex numbers using rational Cherednik algebras.
Let R be a commutative ring with identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists $r\in R- \{0\}$ such that $Ir=(0)$. The total graph of nonzero annihilating ideals of R is the graph $\Omega (R)$ whose vertices are the nonzero annihilating ideals of R and two distinct vertices $I,J$ are joined if and only if $I+J$ is also an annihilating ideal of R. We study the strong metric dimension of $\Omega (R)$ and evaluate it in several cases.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if , it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems.
We exhibit a set of generating relations for the modular invariant ring of a vector and a covector for the two-dimensional general linear group over a finite field.
Unfortunately, there is a mistake in [PS, Lemma 3.10] which invalidates [PS, Theorem 3.12]. We show that the theorem still holds if the ring is assumed to be Gorenstein.
The symbolic analytic spread of an ideal $I$ is defined in terms of the rate of growth of the minimal number of generators of its symbolic powers. In this article, we find upper bounds for the symbolic analytic spread under certain conditions in terms of other invariants of $I$. Our methods also work for more general systems of ideals. As applications, we provide bounds for the (local) Kodaira dimension of divisors, the arithmetic rank, and the Frobenius complexity. We also show sufficient conditions for an ideal to be a set-theoretic complete intersection.
Following the work of Mustaţă and Bitoun, we recently developed a notion of Bernstein–Sato roots for arbitrary ideals, which is a prime characteristic analogue for the roots of the Bernstein–Sato polynomial. Here, we prove that for monomial ideals the roots of the Bernstein–Sato polynomial (over $\mathbb{C}$) agree with the Bernstein–Sato roots of the mod $p$ reductions of the ideal for $p$ large enough. We regard this as evidence that the characteristic-$p$ notion of Bernstein–Sato root is reasonable.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.