We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the conjecture of Franceschini and Lorenzini [‘Fat points of $\mathbb P^n$ whose support is contained in a linear proper subspace’, J. Pure and Appl. Algebra160 (2001), 169–182] about the regularity index of fat points of $\mathbb P^n$ whose support is contained in a linear proper subspace.
In this paper, we consider a conilpotent coalgebra $C$ over a field $k$. Let $\Upsilon :\ C{{-\mathsf{Comod}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural functor of inclusion of the category of $C$-comodules into the category of $C^*$-modules, and let $\Theta :\ C{{-\mathsf{Contra}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural forgetful functor. We prove that the functor $\Upsilon$ induces a fully faithful triangulated functor on bounded (below) derived categories if and only if the functor $\Theta$ induces a fully faithful triangulated functor on bounded (above) derived categories, and if and only if the $k$-vector space $\textrm {Ext}_C^n(k,k)$ is finite-dimensional for all $n\ge 0$. We call such coalgebras “weakly finitely Koszul”.
Let $(A,\mathfrak{m} )$ be a hypersurface local ring of dimension $d \geq 1$ and let I be an $\mathfrak{m} $-primary ideal. We show that there is a integer rI$\geq\;-1$ (depending only on I) such that if M is any non-free maximal Cohen–Macaulay (= MCM) A-module the function $n \rightarrow \ell(\operatorname{Tor}^A_1(M, A/I^{n+1}))$ (which is of polynomial type) has degree rI. Analogous results hold for Hilbert polynomials associated to Ext-functors. Surprisingly, a key ingredient is the classification of thick subcategories of the stable category of MCM A-modules (obtained by Takahashi, see [11, 6.6]).
We define a local homomorphism $(Q,k)\to (R,\ell )$ to be Koszul if its derived fiber $R\otimes ^{\mathsf {L}}_Q k$ is formal, and if $\operatorname {Tor}^{Q}(R,k)$ is Koszul in the classical sense. This recovers the classical definition when Q is a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of $\mathrm {A}_{\infty }$-structures on resolutions. We use this machinery to construct universal free resolutions of R-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of an R-module M is often minimal and can be described by a finite amount of data whenever M and R have finite projective dimension over Q. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings.
We prove new statistical results about the distribution of the cokernel of a random integral matrix with a concentrated residue. Given a prime p and a positive integer n, consider a random $n \times n$ matrix $X_n$ over the ring $\mathbb{Z}_p$ of p-adic integers whose entries are independent. Previously, Wood showed that as long as each entry of $X_n$ is not too concentrated on a single residue modulo p, regardless of its distribution, the distribution of the cokernel $\mathrm{cok}(X_n)$ of $X_n$, up to isomorphism, weakly converges to the Cohen–Lenstra distribution, as $n \rightarrow \infty$. Here on the contrary, we consider the case when $X_n$ has a concentrated residue $A_n$ so that $X_n = A_n + pB_n$. When $B_n$ is a Haar-random $n \times n$ matrix over $\mathbb{Z}_p$, we explicitly compute the distribution of $\mathrm{cok}(P(X_n))$ for every fixed n and a non-constant monic polynomial $P(t) \in \mathbb{Z}_p[t]$. We deduce our result from an interesting equidistribution result for matrices over $\mathbb{Z}_p[t]/(P(t))$, which we prove by establishing a version of the Weierstrass preparation theorem for the noncommutative ring $\mathrm{M}_n(\mathbb{Z}_p)$ of $n \times n$ matrices over $\mathbb{Z}_p$. We also show through cases the subtlety of the “universality” behavior when $B_n$ is not Haar-random.
The notion of Vasconcelos invariant, known in the literature as v-number, of a homogeneous ideal in a polynomial ring over a field was introduced in 2020 to study the asymptotic behavior of the minimum distance of projective Reed–Muller type codes. We initiate the study of this invariant for graded modules. Let R be a Noetherian $\mathbb {N}$-graded ring and M be a finitely generated graded R-module. The v-number $v(M)$ can be defined as the least possible degree of a homogeneous element x of M for which $(0:_Rx)$ is a prime ideal of R. For a homogeneous ideal I of R, we mainly prove that $v(I^nM)$ and $v(I^nM/I^{n+1}M)$ are eventually linear functions of n. In addition, if $(0:_M I)=0$, then $v(M/I^{n}M)$ is also eventually linear with the same leading coefficient as that of $v(I^nM/I^{n+1}M)$. These leading coefficients are described explicitly. The result on the linearity of $v(M/I^{n}M)$ considerably strengthens a recent result of Conca which was shown when R is a domain and $M=R$, and Ficarra–Sgroi where the polynomial case is treated.
We analyze infinitesimal deformations of morphisms of locally free sheaves on a smooth projective variety X over an algebraically closed field of characteristic zero. In particular, we describe a differential graded Lie algebra controlling the deformation problem. As an application, we study infinitesimal deformations of the pairs given by a locally free sheaf and a subspace of its sections with a view toward Brill-Noether theory.
Let $(R,\mathfrak {m})$ be a Noetherian local ring and I an ideal of R. We study how local cohomology modules with support in $\mathfrak {m}$ change for small perturbations J of I, that is, for ideals J such that $I\equiv J\bmod \mathfrak {m}^N$ for large N, under the hypothesis that $R/I$ and $R/J$ share the same Hilbert function. As one of our main results, we show that if $R/I$ is generalized Cohen–Macaulay, then the local cohomology modules of $R/J$ are isomorphic to the corresponding local cohomology modules of $R/I$, except possibly the top one. In particular, this answers a question raised by Quy and V. D. Trung. Our approach also allows us to prove that if $R/I$ is Buchsbaum, then so is $R/J$. Finally, under some additional assumptions, we show that if $R/I$ satisfies Serre’s property $(S_n)$, then so does $R/J$.
In this paper, we show existence of bountiful examples of Gorenstein local rings A and B such that there is a triangle equivalence between the stable categories CM(A), CM(B).
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
Let $(A,\mathfrak{m})$ be a Cohen–Macaulay local ring, and then the notion of a $T$-split sequence was introduced in the part-1 of this paper for the $\mathfrak{m}$-adic filtration with the help of the numerical function $e^T_A$. In this article, we explore the relation between Auslander–Reiten (AR)-sequences and $T$-split sequences. For a Gorenstein ring $(A,\mathfrak{m})$, we define a Hom-finite Krull–Remak–Schmidt category $\mathcal{D}_A$ as a quotient of the stable category $\underline{\mathrm{CM}}(A)$. This category preserves isomorphism, that is, $M\cong N$ in $\mathcal{D}_A$ if and only if $M\cong N$ in $\underline{\mathrm{CM}}(A)$.This article has two objectives: first objective is to extend the notion of $T$-split sequences, and second objective is to explore the function $e^T_A$ and $T$-split sequences. When $(A,\mathfrak{m})$ is an analytically unramified Cohen–Macaulay local ring and $I$ is an $\mathfrak{m}$-primary ideal, then we extend the techniques in part-1 of this paper to the integral closure filtration with respect to $I$ and prove a version of Brauer–Thrall-II for a class of such rings.
Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions
of polynomial type and let their degrees be $t^I(N) $ and $e^I(N)$. We prove that $t^I(N) = e^I(N) = \max\{\dim N, d -1 \}$. A crucial ingredient in the proof is that $D^b(A)_f$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories.
We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.
We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
We invoke the Bernstein–Gel$'$fand–Gel$'$fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
In the derived category of a commutative noetherian ring, we explicitly construct a silting object associated with each sp-filtration of the Zariski spectrum satisfying the “slice” condition. Our new construction is based on local cohomology and it allows us to study when the silting object is tilting. For a ring admitting a dualizing complex, this occurs precisely when the sp-filtration arises from a codimension function on the spectrum. In the absence of a dualizing complex, the situation is more delicate and the tilting property is closely related to the condition that the ring is a homomorphic image of a Cohen–Macaulay ring. We also provide dual versions of our results in the cosilting case.
We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the $h^*$-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the h-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.
We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes F-nilpotent curves. Further, we show that a reduced, local F-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to F-nilpotent affine semigroup rings.