We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate whether the property of having linear quotients is inherited by ideals generated by multigraded shifts of a Borel ideal and a squarefree Borel ideal. We show that the ideal generated by the first multigraded shifts of a Borel ideal has linear quotients, as do the ideal generated by the $k$th multigraded shifts of a principal Borel ideal and an equigenerated squarefree Borel ideal for each $k$. Furthermore, we show that equigenerated squarefree Borel ideals share the property of being squarefree Borel with the ideals generated by multigraded shifts.
A number field K with a ring of integers 𝒪K is called a Pólya field, if the 𝒪K-module of integer-valued polynomials on 𝒪K has a regular basis, or equivalently all its Bhargava factorial ideals are principal [1]. We generalize Leriche's criterion [8] for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of ℚ. Also, we prove for a real (resp. imaginary) Pólya S3-extension L of ℚ, at most four (resp. three) primes can be ramified. Moreover, depending on the solvability of unit norm equation over the quadratic subfield of L, we determine when these sharp upper bounds can occur.
A square-free monomial ideal $I$ of $k[x_{1},\ldots ,x_{n}]$ is said to be an $f$-ideal if the facet complex and non-face complex associated with $I$ have the same $f$-vector. We show that $I$ is an $f$-ideal if and only if its Newton complementary dual $\widehat{I}$ is also an $f$-ideal. Because of this duality, previous results about some classes of $f$-ideals can be extended to a much larger class of $f$-ideals. An interesting by-product of our work is an alternative formulation of the Kruskal–Katona theorem for $f$-vectors of simplicial complexes.
We consider a family of nonlinear rational recurrences of odd order which was introduced by Heideman and Hogan, and recently rediscovered in the theory of Laurent phenomenon algebras (a generalization of cluster algebras). All of these recurrences have the Laurent property, implying that for a particular choice of initial data (all initial values set to 1) they generate an integer sequence. For these particular sequences, Heideman and Hogan gave a direct proof of integrality by showing that the terms of the sequence also satisfy a linear recurrence relation with constant coefficients. Here we present an analogous result for the general solution of each of these recurrences.
For a skew-symmetrizable cluster algebra ${\mathcal{A}}_{t_{0}}$ with principal coefficients at $t_{0}$, we prove that each seed $\unicode[STIX]{x1D6F4}_{t}$ of ${\mathcal{A}}_{t_{0}}$ is uniquely determined by its $C$-matrix, which was proposed by Fomin and Zelevinsky (Compos. Math. 143 (2007), 112–164) as a conjecture. Our proof is based on the fact that the positivity of cluster variables and sign coherence of $c$-vectors hold for ${\mathcal{A}}_{t_{0}}$, which was actually verified in Gross et al. (Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2) (2018), 497–608). Further discussion is provided in the sign-skew-symmetric case so as to obtain a weak version of the conjecture in this general case.
We establish a combinatorial realization of continued fractions as quotients of cardinalities of sets. These sets are sets of perfect matchings of certain graphs, the snake graphs, that appear naturally in the theory of cluster algebras. To a continued fraction $[a_{1},a_{2},\ldots ,a_{n}]$ we associate a snake graph ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ such that the continued fraction is the quotient of the number of perfect matchings of ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ and ${\mathcal{G}}[a_{2},\ldots ,a_{n}]$. We also show that snake graphs are in bijection with continued fractions. We then apply this connection between cluster algebras and continued fractions in two directions. First we use results from snake graph calculus to obtain new identities for the continuants of continued fractions. Then we apply the machinery of continued fractions to cluster algebras and obtain explicit direct formulas for quotients of elements of the cluster algebra as continued fractions of Laurent polynomials in the initial variables. Building on this formula, and using classical methods for infinite periodic continued fractions, we also study the asymptotic behavior of quotients of elements of the cluster algebra.
We show that the canonical lift construction for ordinary elliptic curves over perfect fields of characteristic $p>0$ extends uniquely to arbitrary families of ordinary elliptic curves, even over $p$-adic formal schemes. In particular, the universal ordinary elliptic curve has a canonical lift. The existence statement is largely a formal consequence of the universal property of Witt vectors applied to the moduli space of ordinary elliptic curves, at least with enough level structure. As an application, we show how this point of view allows for more formal proofs of recent results of Finotti and Erdoğan.
We construct a norm on the nonzero elements of a Prüfer domain and extend this concept to the set of ideals of a Prüfer domain. These norms are used to study factorization properties Prüfer of domains.
Given a smooth variety $X$ and an effective Cartier divisor $D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of $X$ along $D$ has a canonical decomposition in terms of the Chow group of 0-cycles $\text{CH}_{0}(X)$ and the Chow group of 0-cycles with modulus $\text{CH}_{0}(X|D)$ on $X$. When $X$ is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of $\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that $\text{CH}_{0}(X|D)$ is torsion-free and there is an injective cycle class map $\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$ if $X$ is affine. For a smooth affine surface $X$, this is strengthened to show that $K_{0}(X,D)$ is an extension of $\text{CH}_{1}(X|D)$ by $\text{CH}_{0}(X|D)$.
We advocate the use of cluster algebras and their $y$-variables in the study of hyperbolic 3-manifolds. We study hyperbolic structures on the mapping tori of pseudo-Anosov mapping classes of punctured surfaces, and show that cluster $y$-variables naturally give the solutions of the edge-gluing conditions of ideal tetrahedra. We also comment on the completeness of hyperbolic structures.
The article concerns the existence and uniqueness of quantisations of cluster algebras. We prove that cluster algebras with an initial exchange matrix of full rank admit a quantisation in the sense of Berenstein-Zelevinsky and give an explicit generating set to construct all quantisations.
We show that for any commutative Noetherian regular ring $R$ containing $\mathbb{Q}$, the map $K_{1}(R)\rightarrow K_{1}\left(\frac{R[x_{1},\ldots ,x_{4}]}{(x_{1}x_{2}-x_{3}x_{4})}\right)$ is an isomorphism. This answers a question of Gubeladze. We also compute the higher $K$-theory of this monoid algebra. In particular, we show that the above isomorphism does not extend to all higher $K$-groups. We give applications to a question of Lindel on the Serre dimension of monoid algebras.
In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a $\mathbb{Z}$-graded ideal $I\subseteq R=\Bbbk [x_{1},\ldots ,x_{n}]$. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove first for the Lyubeznik table. For the case of squarefree monomial ideals, we get more insight into the relation between Lyubeznik numbers and the linear strands of their associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–Reisner rings are not only an algebraic invariant but also a topological invariant, meaning that they depend on the homeomorphic class of the geometric realization of the associated simplicial complex and the characteristic of the base field.
Fock and Goncharov conjectured that the indecomposable universally positive (i.e. atomic) elements of a cluster algebra should form a basis for the algebra. This was shown to be false by Lee, Li and Zelevinsky. However, we find that the theta bases of Gross, Hacking, Keel and Kontsevich do satisfy this conjecture for a slightly modified definition of universal positivity in which one replaces the positive atlas consisting of the clusters by an enlargement we call the scattering atlas. In particular, this uniquely characterizes the theta functions.
A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen–Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise $3$-disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.
Asymptotic triangulations can be viewed as limits of triangulations under the action of the mapping class group. In the case of the annulus, such triangulations have been introduced in K. Baur and G. Dupont (Compactifying exchange graphs: Annuli and tubes, Ann. Comb.3(18) (2014), 797–839). We construct an alternative method of obtaining these asymptotic triangulations using Coxeter transformations. This provides us with an algebraic and combinatorial framework for studying these limits via the associated quivers.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.
We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal I ⊆ 𝕜[x0, … , xn] we show that for all positive integers m, t and r, where e is the big-height of I and . This captures two conjectures (r = 1 and r = e): one of Harbourne and Huneke, and one of Bocci et al. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra and Number Theory 8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of irreducible binomial ideals, thus answering a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].