We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Estimator algorithms in learning automata are useful tools for adaptive, real-time optimization in computer science and engineering applications. In this paper we investigate theoretical convergence properties for a special case of estimator algorithms - the pursuit learning algorithm. We identify and fill a gap in existing proofs of probabilistic convergence for pursuit learning. It is tradition to take the pursuit learning tuning parameter to be fixed in practical applications, but our proof sheds light on the importance of a vanishing sequence of tuning parameters in a theoretical convergence analysis.
Let G be a group generated by k elements, G=〈g1,…,gk〉, with group operations (multiplication, inversion and comparison with identity) performed by a black box. We prove that one can test whether the group G is abelian at a cost of O(k) group operations. On the other hand, we show that a deterministic approach requires Ω(k2) group operations.
Non-degenerate monoids of skew type are considered. This is a class of monoids S defined by n generators and quadratic relations of certain type, which includes the class of monoids yielding set-theoretic solutions of the quantum Yang–Baxter equation, also called binomial monoids (or monoids of I-type with square-free defining relations). It is shown that under any degree-lexicographic order on the associated free monoid FMn. of rank n the set of normal forms of elements of S is a regular language in FMn. As one of the key ingredients of the proof, it is shown that an identity of the form xN yN = yN xN holds in S. The latter is derived via an investigation of the structure of S viewed as a semigroup of matrices over a field. It also follows that the semigroup algebra K[S] is a finite module over a finitely generated commutative subalgebra of the form K[A] for a submonoid A of S.
This paper presents an extension of a result by Guessarian and Niar to the framework of multitransition systems. In the case of a single process, Guessarian and Niar had shown that the set of fair computations of regular SCCS processes coincides with the class of ε-free ω-regular languages. Here, in the case of multitransition systems, we show essentially that the sets of fair computations on multitransition systems are strictly included in the class of ε-free ω-regular N-languages. The inclusions of these fair sets into the class of ε-free ω-regular N-languages are obtained by showing that the strict (respectively weak, strong) fair condition can be simulated by the Muller acceptance condition on multitransition systems. The strictness of the inclusions is obtained by exhibiting two counter-examples showing that the reverse is false, that is, not every ω-regular N-language is the set of fair computations of some multitransition system.
The computation of growth series for the higher Baumslag–Solitar groups is an open problem first posed by de la Harpe and Grigorchuk. We study the growth of the horocyclic subgroup as the key to the overall growth of these Baumslag–Solitar groups BS(p,q), where 1<p<q. In fact, the overall growth series can be represented as a modified convolution product with one of the factors being based on the series for the horocyclic subgroup. We exhibit two distinct algorithms that compute the growth of the horocyclic subgroup and discuss the time and space complexity of these algorithms. We show that when p divides q, the horocyclic subgroup has a geodesic combing whose words form a context-free (in fact, one-counter) language. A theorem of Chomsky–Schützenberger allows us to compute the growth series for this subgroup, which is rational. When p does not divide q, we show that no geodesic combing for the horocyclic subgroup forms a context-free language, although there is a context-sensitive geodesic combing. We exhibit a specific linearly bounded Turing machine that accepts this language (with quadratic time complexity) in the case of BS(2,3) and outline the Turing machine construction in the general case.
In this paper we construct the maximal subgroups of geometric type of the orthogonal groups in dimension d over GF(q) in O(d3+d2log q+log qlog log q) finite field operations.
Since any function f(x1, … , xm) from {0, 1}m in a finite field k can be uniquely written as a multilinear polynomial, we associate to it its inverse dual f*(x1, … , xm) expressing the coefficients of this canonical polynomial. We show that the unlikely hypothesis that the class P(k) of sequences of functions of polynomial complexity be closed by duality is equivalent to the well-known hypothesis P = #pP, where p is the characteristic of k.
In a first section we expose the result in the frame of classical Boolean calculus, that is, when k = ℤ/2ℤ. In a second section we treat the general case, introducing a notion of transformation whose duality is a special case; the transformations form a group isomorphic to GL2(k); among them, we distinguish the benign transformations, which have a weak effect on the complexity of functions; we show that, in this respect, all the non-benign transformations have the same power of harmfulness.
In the third section we consider functions from km into k, and in the last, after introducing #P = P to the landscape, we compare our results with those of Guillaume Malod, concerning the closure by ‘coefficient-function’ of various classes of complexity of sequences of polynomial defined in Valiant's way.
After suitable normalization the asymptotic root value W of a minimax game tree of order b ≥ 2 with independent and identically distributed input values having a continuous, strictly increasing distribution function on a subinterval of R appears to be a particular solution of the stochastic maximin fixed-point equation W ξ max1≤i≤bmin1≤j≤bWi,j, where Wi,j are independent copies of W and denotes equality in law. Moreover, ξ= g'(α) > 1, where g(x) := (1 − (1 − x)b)b and α denotes the unique fixed point of g in (0, 1). This equation, which takes the form F(t) = g(F(t/ξ)) in terms of the distribution function F of W, is studied in the present paper for a reasonably extended class of functions g so as to encompass more general stochastic maximin equations as well. A complete description of the set of solutions F is provided followed by a discussion of additional properties such as continuity, differentiability, or existence of moments. Based on these results, it is further shown that the particular solution mentioned above stands out among all other ones in that its distribution function is the restriction of an entire function to the real line. This extends recent work of Ali Khan, Devroye and Neininger (2005). A connection with another class of stochastic fixed-point equations for weighted minima and maxima is also discussed.
We discuss two Monte Carlo algorithms for finding the global maximum of a simple random walk with negative drift. This problem can be used to connect the analysis of random input Monte Carlo algorithms with ideas and principles from mathematical statistics.
The iterative division of a triangle by chords which join a randomly-selected vertex of a triangle to the opposite side is investigated. Results on the limiting random graph which eventuates are given. Aspects studied are: the order of vertices; the fragmentation of chords; age distributions for elements of the graph; various topological characterisations of the triangles. Different sampling protocols are explored. Extensive use is made of the theory of branching processes.
This paper studies path lengths in random binary search trees under the random permutation model. It is known that the total path length, when properly normalized, converges almost surely to a nondegenerate random variable Z. The limit distribution is commonly referred to as the ‘quicksort distribution’. For the class 𝒜m of finite binary trees with at most m nodes we partition the external nodes of the binary search tree according to the largest tree that each external node belongs to. Thus, the external path length is divided into parts, each part associated with a tree in 𝒜m. We show that the vector of these path lengths, after normalization, converges almost surely to a constant vector times Z.
This paper is a study of the error in approximating the global maximum of a Brownian motion on the unit interval by observing the value at randomly chosen points. One point of view is to look at the error from random sampling for a given fixed Brownian sample path; another is to look at the error with both the path and observations random. In the first case we show that for almost all Brownian paths the error, normalized by multiplying by the square root of the number of observations, does not converge in distribution, while in the second case the normalized error does converge in distribution. We derive the limiting distribution of the normalized error averaged over all paths.
In this paper we study the following general class of concurrent processing systems. There are several different classes of processors (servers) and many identical processors within each class. There is also a continuous random flow of jobs, arriving for processing at the system. Each job needs to engage concurrently several processors from various classes in order to be processed. After acquiring the needed processors the job begins to be executed. Processing is done non-preemptively, lasts for a random amount of time, and then all the processors are released simultaneously. Each job is specified by its arrival time, its processing time, and the list of processors that it needs to access simultaneously. The random flow (sequence) of jobs has a stationary and ergodic structure. There are several possible policies for scheduling the jobs on the processors for execution; it is up to the system designer to choose the scheduling policy to achieve certain objectives.
We focus on the effect that the choice of scheduling policy has on the asymptotic behavior of the system at large times and especially on its stability, under general stationary and ergocic input flows.