We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we study the asymptotic Chow stability of symmetric reflexive toric varieties. We provide examples of symmetric reflexive toric varieties that are not asymptotically Chow semistable. On the other hand, we also show that any weakly symmetric reflexive toric varieties which have a regular triangulation (so are special) are asymptotically Chow polystable. Furthermore, we give sufficient criteria to determine when a toric variety is asymptotically Chow polystable. In particular, two examples of toric varieties are given that are asymptotically Chow polystable, but not special. We also provide some examples of special polytopes, mainly in two or three dimensions, and some in higher dimensions.
In this paper we discuss three distance functions on the set of convex bodies. In particular we study the convergence of Delzant polytopes, which are fundamental objects in symplectic toric geometry. By using these observations, we derive some convergence theorems for symplectic toric manifolds with respect to the Gromov–Hausdorff distance.
Gaussian random polytopes have received a lot of attention, especially in the case where the dimension is fixed and the number of points goes to infinity. Our focus is on the less-studied case where the dimension goes to infinity and the number of points is proportional to the dimension d. We study several natural quantities associated with Gaussian random polytopes in this setting. First, we show that the expected number of facets is equal to $C(\alpha)^{d+o(d)}$, where $C(\alpha)$ is some constant which depends on the constant of proportionality $\alpha$. We also extend this result to the expected number of k-facets. We then consider the more difficult problem of the asymptotics of the expected number of pairs of estranged facets of a Gaussian random polytope. When the number of points is 2d, we determine the constant C such that the expected number of pairs of estranged facets is equal to $C^{d+o(d)}$.
A pebble tree is an ordered tree where each node receives some colored pebbles, in such a way that each unary node receives at least one pebble, and each subtree has either one more or as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing intriguing generalizations of the classical permutahedra and associahedra, our motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
This paper initiates the explicit study of face numbers of matroid polytopes and their computation. We prove that, for the large class of split matroid polytopes, their face numbers depend solely on the number of cyclic flats of each rank and size, together with information on the modular pairs of cyclic flats. We provide a formula which allows us to calculate $f$-vectors without the need of taking convex hulls or computing face lattices. We discuss the particular cases of sparse paving matroids and rank two matroids, which are of independent interest due to their appearances in other combinatorial and geometric settings.
A spectral convex set is a collection of symmetric matrices whose range of eigenvalues forms a symmetric convex set. Spectral convex sets generalize the Schur-Horn orbitopes studied by Sanyal–Sottile–Sturmfels (2011). We study this class of convex bodies, which is closed under intersections, polarity and Minkowski sums. We describe orbits of faces and give a formula for their Steiner polynomials. We then focus on spectral polyhedra. We prove that spectral polyhedra are spectrahedra and give small representations as spectrahedral shadows. We close with observations and questions regarding hyperbolicity cones, polar convex bodies and spectral zonotopes.
An empty simplex is a lattice simplex in which vertices are the only lattice points. We show two constructions leading to the first known empty simplices of width larger than their dimension:
◦ We introduce cyclotomic simplices and exhaustively compute all the cyclotomic simplices of dimension $10$ and volume up to $2^{31}$. Among them, we find five empty ones of width $11$ and none of larger width.
◦ Using circulant matrices of a very specific form, we construct empty simplices of arbitrary dimension d and width growing asymptotically as $d/\operatorname {\mathrm {arcsinh}}(1) \sim 1.1346\,d$.
We propose and unify classes of different models for information propagation over graphs. In a first class, propagation is modelled as a wave, which emanates from a set of known nodes at an initial time, to all other unknown nodes at later times with an ordering determined by the arrival time of the information wave front. A second class of models is based on the notion of a travel time along paths between nodes. The time of information propagation from an initial known set of nodes to a node is defined as the minimum of a generalised travel time over subsets of all admissible paths. A final class is given by imposing a local equation of an eikonal form at each unknown node, with boundary conditions at the known nodes. The solution value of the local equation at a node is coupled to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove equivalences between them. Finally, we apply the front propagation models on graphs to semi-supervised learning via label propagation and information propagation on trust networks.
We prove a functional version of the additive kinematic formula as an application of the Hadwiger theorem on convex functions together with a Kubota-type formula for mixed Monge–Ampère measures. As an application, we give a new explanation for the equivalence of the representations of functional intrinsic volumes as singular Hessian valuations and as integrals with respect to mixed Monge–Ampère measures. In addition, we obtain a new integral geometric formula for mixed area measures of convex bodies, where integration on $\operatorname {SO}(n-1)\times \operatorname {O}(1)$ is considered.
We initiate the study of a class of polytopes, which we coin polypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of $(W,c)$-polypositroid for a finite Weyl group W and a choice of Coxeter element c. We connect the theory of $(W,c)$-polypositroids to cluster algebras of finite type and to generalized associahedra. We discuss membranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids.
We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the $h^*$-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the h-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.
We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.
Remixed Eulerian numbers are a polynomial q-deformation of Postnikov’s mixed Eulerian numbers. They arose naturally in previous work by the authors concerning the permutahedral variety and subsume well-known families of polynomials such as q-binomial coefficients and Garsia–Remmel’s q-hit numbers. We study their combinatorics in more depth. As polynomials in q, they are shown to be symmetric and unimodal. By interpreting them as computing success probabilities in a simple probabilistic process we arrive at a combinatorial interpretation involving weighted trees. By decomposing the permutahedron into certain combinatorial cubes, we obtain a second combinatorial interpretation. At $q=1$, the former recovers Postnikov’s interpretation whereas the latter recovers Liu’s interpretation, both of which were obtained via methods different from ours.
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in
$\mathbb {P}^n$
and
$\mathbb {P}^n/G$
, where G is a finite group that acts on
$\mathbb {P}^n$
and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian
$\operatorname {{\mathrm {Gr}}}(n,r)$
and preserves an appropriate Calabi–Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi–Yau hypersurfaces inside
$\operatorname {{\mathrm {Gr}}}(n,r)$
and
$\operatorname {{\mathrm {Gr}}}(n,r)/G$
. This allows us to describe a compactification of the Eguchi–Hori–Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
We give an upper bound on the volume
$\operatorname {vol}(P^*)$
of a polytope
$P^*$
dual to a d-dimensional lattice polytope P with exactly one interior lattice point in each dimension d. This bound, expressed in terms of the Sylvester sequence, is sharp and achieved by the dual to a particular reflexive simplex. Our result implies a sharp upper bound on the volume of a d-dimensional reflexive polytope. Translated into toric geometry, this gives a sharp upper bound on the anti-canonical degree
$(-K_X)^d$
of a d-dimensional Fano toric variety X with at worst canonical singularities.
We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely combinatorial characterisation of polyhedrally complete logics. Using the Nerve Criterion we show, easily, that there are continuum many intermediate logics that are not polyhedrally complete but which have the finite model property. We also provide, at considerable combinatorial labour, a countably infinite class of logics axiomatised by the Jankov–Fine formulas of ‘starlike trees’ all of which are polyhedrally complete. The polyhedral completeness theorem for these ‘starlike logics’ is the second main result of this paper.
In this paper we introduce two new classes of stationary random simplicial tessellations, the so-called
$\beta$
- and
$\beta^{\prime}$
-Delaunay tessellations. Their construction is based on a space–time paraboloid hull process and generalizes that of the classical Poisson–Delaunay tessellation. We explicitly identify the distribution of volume-power-weighted typical cells, establishing thereby a remarkable connection to the classes of
$\beta$
- and
$\beta^{\prime}$
-polytopes. These representations are used to determine the principal characteristics of such cells, including volume moments, expected angle sums, and cell intensities.
We prove that projective spaces of Lorentzian and real stable polynomials are homeomorphic to Euclidean balls. This solves a conjecture of June Huh and the author. The proof utilises and refines a connection between the symmetric exclusion process in interacting particle systems and the geometry of polynomials.
In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$. We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$, where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$. This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $.
Given n distinct points
$\mathbf {x}_1, \ldots , \mathbf {x}_n$
in
$\mathbb {R}^d$
, let K denote their convex hull, which we assume to be d-dimensional, and
$B = \partial K $
its
$(d-1)$
-dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps
$\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$
which, for
$\varepsilon> 0$
, are defined on the
$(d-1)$
-dimensional sphere, and whose images
$\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$
are codimension
$1$
submanifolds contained in the interior of K. Moreover, as the parameter
$\varepsilon $
goes to
$0^+$
, the images
$\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$
converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.