To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a natural weighted enumeration of lattice points in a polytope, and give a Brion-type formula for the corresponding generating function. The weighting has combinatorial significance, and its generating function may be viewed as a generalization of the Rogers–Szegő polynomials. It also arises from the geometry of the toric arc scheme associated to the normal fan of the polytope. We show that the asymptotic behaviour of thecoefficients at $q=1$ is Gaussian.
In this paper, we study the class of polytopes which can be obtained by taking the convex hull of some subset of the points $\{e_i-e_j \ \vert \ i \neq j\} \cup \{\pm e_i\}$ in $\mathbb {R}^n$, where $e_1,\dots ,e_n$ is the standard basis of $\mathbb {R}^n$. Such a polytope can be encoded by a quiver Q with vertices $V \subseteq \{{\upsilon }_1,\dots ,{\upsilon }_n\} \cup \{\star \}$, where each edge ${\upsilon }_j\to {\upsilon }_i$ or $\star \to {\upsilon }_i$ or ${\upsilon }_i\to \star $ gives rise to the point $e_i-e_j$ or $e_i$ or $-e_i$, respectively; we denote the corresponding polytope as $\operatorname {Root}(Q)$. These polytopes have been studied extensively under names such as edge polytope and root polytope. We show that if the quiver Q is strongly-connected, then the root polytope $\operatorname {Root}(Q)$ is reflexive and terminal; we moreover give a combinatorial description of the facets of $\operatorname {Root}(Q)$. We also show that if Q is planar, then $\operatorname {Root}(Q)$ is (integrally equivalent to) the polar dual of the flow polytope of the planar dual quiver $Q^{\vee }$. Finally, we consider the case that Q comes from the Hasse diagram of a finite ranked poset P and show in this case that $\operatorname {Root}(Q)$ is polar dual to (a translation of) a marked order polytope. We then go on to study the toric variety $Y(\mathcal {F}_Q)$ associated to the face fan $\mathcal {F}_Q$ of $\operatorname {Root}(Q)$. If Q comes from a ranked poset P, we give a combinatorial description of the Picard group of $Y(\mathcal {F}_Q)$, in terms of a new canonical ranked extension of P, and we show that $Y(\mathcal {F}_Q)$ is a small partial desingularisation of the Hibi projective toric variety $Y_{\mathcal {O}(P)}$ of the order polytope$\mathcal {O}(P)$. We show that $Y(\mathcal {F}_Q)$ has a small crepant toric resolution of singularities $Y(\widehat {\mathcal {F}}_Q)$ and, as a consequence that the Hibi toric variety $Y_{\mathcal {O}(P)}$ has a small resolution of singularities for any ranked poset P. These results have applications to mirror symmetry [61].
A complete classification of unimodular valuations on the set of lattice polygons with values in the spaces of polynomials and formal power series, respectively, is established. The valuations are classified in terms of their behavior with respect to dilation using extensions to unbounded polyhedra and basic invariant theory.
We prove that the initial degenerations of the flag variety admit closed immersions into finite inverse limits of flag matroid strata, where the diagrams are derived from matroidal subdivisions of a suitable flag matroid polytope. As an application, we prove that the initial degenerations of $\mathrm{F}\ell^{\circ}(n)$–the open subvariety of the complete flag variety $\mathrm{F}\ell(n)$ consisting of flags in general position—are smooth and irreducible when $n\leq 4$. We also study the Chow quotient of $\mathrm{F}\ell(n)$ by the diagonal torus of $\textrm{PGL}(n)$ and show that, for $n=4$, this is a log crepant resolution of its log canonical model.
We study the hypersimplex under the action of the symmetric group $S_n$ by coordinate permutation. We prove that its equivariant volume, given by the evaluation of its equivariant $H^*$-series at $1$, is the permutation character of decorated ordered set partitions under the natural action of $S_n$. This verifies a conjecture of Stapledon for the hypersimplex. To prove this result, we give a formula for the coefficients of the $H^*$-polynomial. Additionally, for the $(2,n)$-hypersimplex, we use this formula to show that trivial character need not appear as a direct summand of a coefficient of the $H^*$-polynomial, which gives a family of counterexamples to a different conjecture of Stapledon.
Building on the correspondence between finitely axiomatised theories in Łukasiewicz logic and rational polyhedra, we prove that the unification type of the fragment of Łukasiewicz logic with $n\geqslant 2$ variables is nullary. This solves a problem left open by V. Marra and L. Spada [Ann. Pure Appl. Logic 164 (2013), pp. 192–210]. Furthermore, we refine the study of unification with bounds on the number of variables. Our proposal distinguishes the number m of variables allowed in the problem and the number n in the solution. We prove that the unification type of Łukasiewicz logic for all $m,n \geqslant 2$ is nullary.
Tao (2018) showed that in order to prove the Lonely Runner Conjecture (LRC) up to $n+1$ runners it suffices to consider positive integer velocities in the order of $n^{O(n^2)}$. Using the zonotopal reinterpretation of the conjecture due to the first and third authors (2017) we here drastically improve this result, showing that velocities up to $\binom {n+1}{2}^{n-1} \le n^{2n}$ are enough.
We prove the same finite-checking result, with the same bound, for the more general shifted Lonely Runner Conjecture (sLRC), except in this case our result depends on the solution of a question, that we dub the Lonely Vector Problem (LVP), about sumsets of n rational vectors in dimension two. We also prove the same finite-checking bound for a further generalization of sLRC that concerns cosimple zonotopes with n generators, a class of lattice zonotopes that we introduce.
In the last sections we look at dimensions two and three. In dimension two we prove our generalized version of sLRC (hence we reprove the sLRC for four runners), and in dimension three we show that to prove sLRC for five runners it suffices to look at velocities adding up to $195$.
The Chan–Robbins–Yuen polytope ($CRY_n$) of order n is a face of the Birkhoff polytope of doubly stochastic matrices that is also a flow polytope of the directed complete graph $K_{n+1}$ with netflow $(1,0,0, \ldots , 0, -1)$. The volume and lattice points of this polytope have been actively studied; however, its face structure has received less attention. We give generating functions and explicit formulas for computing the f-vector by using Hille’s (2003) result bijecting faces of a flow polytope to certain graphs, as well as Andresen–Kjeldsen’s (1976) result that enumerates certain subgraphs of the directed complete graph. We extend our results to flow polytopes of the complete graph having arbitrary (non-negative) netflow vectors and recover the f-vector of the Tesler polytope of Mészáros–Morales–Rhoades (2017).
We consider a finite-dimensional vector space $W\subset K^E$ over a field K and a set E. We show that the set $\mathcal {C}(W)\subset 2^E$ of minimal supports of W are the circuits of a matroid on E. When the cardinality of K is large (compared to that of E), then the family of supports of W is a matroid. Afterwards we apply these results to tropical differential algebraic geometry (tdag), studying the set of supports of spaces of formal power series solutions $\text {Sol}(\Sigma )$ of systems of linear differential equations (ldes) $\Sigma$ in variables $x_1,\ldots ,x_n$ having coefficients in . If $\Sigma $ is of differential type zero, then the set $\mathcal {C}(Sol(\Sigma ))\subset (2^{\mathbb {N}^{m}})^n$ of minimal supports defines a matroid on $E=[n]\times \mathbb {N}^{m}$, and if the cardinality of K is large enough, then the set of supports is also a matroid on E. By applying the fundamental theorem of tdag (fttdag), we give a necessary condition under which the set of solutions $Sol(U)$ of a system U of tropical ldes is a matroid. We give a counterexample to the fttdag for systems $\Sigma $ of ldes over countable fields for which is not a matroid.
We generalize Baker–Bowler’s theory of matroids over tracts to orthogonal matroids, define orthogonal matroids with coefficients in tracts in terms of Wick functions, orthogonal signatures, circuit sets and orthogonal vector sets, and establish basic properties on functoriality, duality and minors. Our cryptomorphic definitions of orthogonal matroids over tracts provide proofs of several representation theorems for orthogonal matroids. In particular, we give a new proof that an orthogonal matroid is regular if and only if it is representable over ${\mathbb F}_2$ and ${\mathbb F}_3$, which was originally shown by Geelen [16], and we prove that an orthogonal matroid is representable over the sixth-root-of-unity partial field if and only if it is representable over ${\mathbb F}_3$ and ${\mathbb F}_4$.
Factorization structures occur in toric differential and discrete geometry and can be viewed in multiple ways, e.g., as objects determining substantial classes of explicit toric Sasaki and Kähler geometries, as special coordinates on such or as an apex generalization of cyclic polytopes featuring a generalized Gale’s evenness condition. This article presents a comprehensive study of this new concept called factorization structures. It establishes their structure theory and introduces their use in the geometry of cones and polytopes. The article explains a construction of polytopes and cones compatible with a given factorization structure and exemplifies it for the product Segre–Veronese and Veronese factorization structures, where the latter case includes cyclic polytopes. Further, it derives the generalized Gale’s evenness condition for compatible cones, polytopes, and their duals and explicitly describes faces of these. Factorization structures naturally provide generalized Vandermonde identities, which relate normals of any compatible polytope, and which are used to find examples of Delzant and rational Delzant polytopes compatible with the Veronese factorization structure. The article offers a myriad of factorization structure examples, which are later characterized to be precisely factorization structures with decomposable curves, and raises the question if these encompass all factorization structures, i.e., the existence of an indecomposable factorization curve.
In this note, we study the asymptotic Chow stability of symmetric reflexive toric varieties. We provide examples of symmetric reflexive toric varieties that are not asymptotically Chow semistable. On the other hand, we also show that any weakly symmetric reflexive toric varieties which have a regular triangulation (so are special) are asymptotically Chow polystable. Furthermore, we give sufficient criteria to determine when a toric variety is asymptotically Chow polystable. In particular, two examples of toric varieties are given that are asymptotically Chow polystable, but not special. We also provide some examples of special polytopes, mainly in two or three dimensions, and some in higher dimensions.
In this paper we discuss three distance functions on the set of convex bodies. In particular we study the convergence of Delzant polytopes, which are fundamental objects in symplectic toric geometry. By using these observations, we derive some convergence theorems for symplectic toric manifolds with respect to the Gromov–Hausdorff distance.
Gaussian random polytopes have received a lot of attention, especially in the case where the dimension is fixed and the number of points goes to infinity. Our focus is on the less-studied case where the dimension goes to infinity and the number of points is proportional to the dimension d. We study several natural quantities associated with Gaussian random polytopes in this setting. First, we show that the expected number of facets is equal to $C(\alpha)^{d+o(d)}$, where $C(\alpha)$ is some constant which depends on the constant of proportionality $\alpha$. We also extend this result to the expected number of k-facets. We then consider the more difficult problem of the asymptotics of the expected number of pairs of estranged facets of a Gaussian random polytope. When the number of points is 2d, we determine the constant C such that the expected number of pairs of estranged facets is equal to $C^{d+o(d)}$.
A pebble tree is an ordered tree where each node receives some colored pebbles, in such a way that each unary node receives at least one pebble, and each subtree has either one more or as many leaves as pebbles of each color. We show that the contraction poset on pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope. Beside providing intriguing generalizations of the classical permutahedra and associahedra, our motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
This paper initiates the explicit study of face numbers of matroid polytopes and their computation. We prove that, for the large class of split matroid polytopes, their face numbers depend solely on the number of cyclic flats of each rank and size, together with information on the modular pairs of cyclic flats. We provide a formula which allows us to calculate $f$-vectors without the need of taking convex hulls or computing face lattices. We discuss the particular cases of sparse paving matroids and rank two matroids, which are of independent interest due to their appearances in other combinatorial and geometric settings.
A spectral convex set is a collection of symmetric matrices whose range of eigenvalues forms a symmetric convex set. Spectral convex sets generalize the Schur-Horn orbitopes studied by Sanyal–Sottile–Sturmfels (2011). We study this class of convex bodies, which is closed under intersections, polarity and Minkowski sums. We describe orbits of faces and give a formula for their Steiner polynomials. We then focus on spectral polyhedra. We prove that spectral polyhedra are spectrahedra and give small representations as spectrahedral shadows. We close with observations and questions regarding hyperbolicity cones, polar convex bodies and spectral zonotopes.
An empty simplex is a lattice simplex in which vertices are the only lattice points. We show two constructions leading to the first known empty simplices of width larger than their dimension:
◦ We introduce cyclotomic simplices and exhaustively compute all the cyclotomic simplices of dimension $10$ and volume up to $2^{31}$. Among them, we find five empty ones of width $11$ and none of larger width.
◦ Using circulant matrices of a very specific form, we construct empty simplices of arbitrary dimension d and width growing asymptotically as $d/\operatorname {\mathrm {arcsinh}}(1) \sim 1.1346\,d$.
We propose and unify classes of different models for information propagation over graphs. In a first class, propagation is modelled as a wave, which emanates from a set of known nodes at an initial time, to all other unknown nodes at later times with an ordering determined by the arrival time of the information wave front. A second class of models is based on the notion of a travel time along paths between nodes. The time of information propagation from an initial known set of nodes to a node is defined as the minimum of a generalised travel time over subsets of all admissible paths. A final class is given by imposing a local equation of an eikonal form at each unknown node, with boundary conditions at the known nodes. The solution value of the local equation at a node is coupled to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove equivalences between them. Finally, we apply the front propagation models on graphs to semi-supervised learning via label propagation and information propagation on trust networks.
We prove a functional version of the additive kinematic formula as an application of the Hadwiger theorem on convex functions together with a Kubota-type formula for mixed Monge–Ampère measures. As an application, we give a new explanation for the equivalence of the representations of functional intrinsic volumes as singular Hessian valuations and as integrals with respect to mixed Monge–Ampère measures. In addition, we obtain a new integral geometric formula for mixed area measures of convex bodies, where integration on $\operatorname {SO}(n-1)\times \operatorname {O}(1)$ is considered.