To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hilbert spaces of analytic functions generated by rotationally symmetric measures on disks and annuli are studied. A domination relation between function norm and weighted sums of integral means on circles is developed. The function norm and the weighted sum take the same value for a specified class of polynomials. This class can be varied according to two parameters. Parts of the construction carry over to other Banach spaces of analytic of harmonic functions. Counterexamples illuminating properties of the complex method of interpolation appear as a byproduct.
Let f be a complex valued function from the open upper halfplane E of the complex plane. We study the set of all z∈∂E such that there exist two Stoltz angles V1, V2 in E with vertices in z (i.e., Vi is a closed angle with vertex at z and Vi\{z} ⊂ E, i = 1, 2) such that the function f has different cluster sets with respect to these angles at z. E. P. Dolzhenko showed that this set of singular points is G∂σ and σ-porous for every f. He posed the question of whether each G∂σ σ-porous set is a set of such singular points for some f. We answer this question negatively. Namely, we construct a G∂ porous set, which is a set of such singular points for no function f.
We introduce a sequence of polynomials which are extensions of the classic Bernoulli polynomials. This generalization is obtained by using the Bessel functions of the first kind. We use these polynomials to evaluate explicitly a general class of series containing an entire function of exponential type.
Chen and Gu [1] have given some results relating to normal families, and, in this paper, we give versions of these results valid for normal functions. In the process, we improve some of our previous results involving products of certain spherical derivatives as they relate to normal functions. Some examples are given to show the sharpness of our results.
We show in this paper how the Laplace transform θ* of the duration θ of an excursion by the occupation process {Λt} of an M/M/∞ system above a given threshold can be obtained by means of continued fraction analysis. The representation of θ* by a continued fraction is established and the [m−1/m] Padé approximants are computed by means of well known orthogonal polynomials, namely associated Charlier polynomials. It turns out that the continued fraction considered is an S fraction and as a consequence the Stieltjes transform of some spectral measure. Then, using classic asymptotic expansion properties of hypergeometric functions, the representation of the Laplace transform θ* by means of Kummer's function is obtained. This allows us to recover an earlier result obtained via complex analysis and the use of the strong Markov property satisfied by the occupation process {Λt}. The continued fraction representation enables us to further characterize the distribution of the random variable θ.
We outline the classification, up to isometry, of all tetrahedra in hyperbolic space with one or more vertices truncated, for which the dihedral angles along the edges formed by the truncations are all π/2, and those remaining are all submultiples of π. We show how to find the volumes of these polyhedra, and find presentations and small generating sets for the orientation-preserving subgroups of their reflection groups.
For particular families of these groups, we find low index torsion free subgroups, and construct associated manifolds and manifolds with boundary. In particular, for each g ≥ 2, we find a sequence of hyperbolic manifolds with totally geodesic boundary of genus g, which we conjecture to be of least volume among such manifolds.
Let W denote a positive, increasing and continuous function on [1, ∞]. We write to denote the Dirichlettype space of functions f that are holomorphic in the unit disc and for which
Where If W(x) = x for all x, then is the classicial Dirichlet space for which Note also that for every so, by Fatu's theoreum, every function in . ha finite radial(and angular) limits a.e. on the boundary of U. The question of the existence a.e. on ∂U of certain tangential limits for functions in has been considered in [6,11], but we shall be concerned here with the radial variation
i.e., the length of the image of the ray from 0 to eiθ under the mapping w = f(z), and, in particular, with the size of the set of values of θ for which Lf(θ) can be infinite when
We examine when the composition of two entire functions f and g is even, and extend some of our results to cyclic compositions in general. If p is a polynomial, then we prove that f ^ p is even for a non-constant entire function f if and only if p is even, odd plus a constant, or a quadratic polynomial composed with an odd polynomial. Similar results are proven for odd compositions. We also show that p ^ f can be even when f and no derivative of f are even or odd, where p is a polynomial. We extend some results of an earlier paper to cyclic compositions of polynomials. We also show that our results do not extend in general to rational functions or polynomials in two variables.
Let F(z) be a continuous complex-valued function defined on the closed upper half plane H whose generalized derivative ∂F(z) is unbounded. In this paper, we discuss the relationship between the increasing order of ]∂F(x + iy)] when y → 0 and that of λf(x, t) ](F(x + t) − 2F(x) + F(x − t))/t], (x, t ∈ R), when t → 0.
Hayman has shown that if f is a transcendental meromorphic function and n ≽ 3, then fn f′ assumes all finite values except possibly zero infinitely often. We extend his result in three directions by considering an algebroid function ω, its monomial ωn0 ω′n1, and by estimating the growth of the number of α-points of the monomial.
In this paper we analyze a single server two-queue model with Bernoulli schedules. This discipline is very flexible and contains the exhaustive and 1-limited disciplines as special cases. We formulate the queueing system as a Riemann boundary value problem with shift. The boundary value problem is solved by exploring a Fredholm integral equation around the unit circle. Some numerical examples are presented at the end of the paper.
Sharp extensions of some classical polynomial inequalities of Bernstein are established for rational function spaces on the unit circle, on K = r (mod 2 π), on [-1, 1 ] and on ℝ. The key result is the establishment of the inequality
for every rational function f=pn/qn, where pn is a polynomial of degree at most n with complex coefficients and
with | aj | ≠ 1 for each j and for every zo∈ δ D, where δ D,= {z∈ ℂ: |z| = l}. The above inequality is sharp at every z0∈δD.
Let f be analytic in D = {z: |z| < 1} with f(0) = f′(0)−1=0. For γ > 0, the largest α (γ) and β(γ) are found such that . The results solve the inclusion problem for convex and starlike functions defined in a sector.
Let A denote the set of all functions analytic in U = {z: |;z| < 1} equipped with the topology of unifrom convergence on compact subsets of U. For F ∈ A define Let s(F) and s(F) denote the closed convex hull of s(F) and the set of extreme points of , respectively. Let R denote the class of all F ∈ A such that = {Fx}: |x| = 1} where Fx = F(xz).
We prove that |An| ≤ |AMN| for all positive integers M and N, and for . We also prove that if , then F is a univelaent halfplane mapping.
For a sequence of polynomials (Pn) orthonormal on the interval [−1, 1], we consider the sequence of transforms (gn) of the series given by . We establish necessary and sufficient conditions on the matrix (bnk) for the sequence (gn) to converge uniformly on compact subsets of the interior of an appropriate ellipse to a function holomorphic on that interior.
We give a positive answer to a question of Horst Tietz. A theorem of his that is related to the Mittag-Leffler theorem looks like a duality restult under some locally convex topology on the space of meromorphic functions. Tietz has posed the problem of finding such a topology. It is shown that a topology introduced by Holdguün in 1973 solves the problem. The main tool in the study of this topology is a projective description of it that is derived here. We also argue that Holdgrün's topology is the natural locally convex topology on the space of meromorphic functions.
Let Δ = {z:|Z|<1}, Γ={z:|z|=1}, and ℳ denote the set of complex-valued Borel measures on Γ. Let Kα(z)=(1−z)−α for α>0 and K0(z)=log 1/(1−z). For α > 0 let ℱα denote the family of functions f on Δ having the property that there exists a measure μ∈ℳ such that
for |z|<1. When α=0, this condition is replaced by
We investigate the asymptotics and zero distribution of solutions of ω″ + Aω = 0 where A is an entire function of very slow growth. The results parallel the classical case when A is assumed to be a polynomial.
Convergence results are given for transient characteristics of an M/M/∞ system such as the period of time the occupation process remains above a given state, the area swept by this process above this state and the number of customers arriving during this period. These results are precise in contrast to approximations derived in the framework of the Poisson clumping heuristic introduced by Aldous.