To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that under a sharp growth condition meromorphic functions posses a direction such that at most four rational functions are completely ramified in any sector containing the direction.
In this paper, one model of the universal Teichmüller space is studied. By the method of construction, the lower bound of the inner radius of univalency by the Pre-Schwarzian derivative of quasidisks with infinity as an inner point (such as domains bounded by ellipses) is obtained.
Let f and g be two permutable transcendental entire functions. Assume that f is a solution of a linear differential equation with polynomial coefficients. We prove that, under some restrictions on the coefficients and the growth of f and g, there exist two non-constant rational functions R1 and R2 such that R1 (f) = R(g). As a corollary, we show that f and g have the same Julia set: J(f) = J(g). As an application, we study a function f which is a combination of exponential functions with polynomial coefficients. This research addresses an open question due to Baker.
An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature (), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.
In this paper we treat transcendental meromorphic solutions of some algebraic differential equations. We consider the number of distinct transcendental meromorphic solutions. Algebraic relations between meromorphic solutions and comparisons of the growth of transcendental meromorphic solutions are also discussed.
We show that the group of conformal homeomorphisms of the boundary of a rank one symmetric space (except the hyperbolic plane) of noncompact type acts as a maximal convergence group. Moreover, we show that any family of uniformly quasiconformal homeomorphisms has the convergence property. Our theorems generalize results of Gehring and Martin in the real hyperbolic case for Möbius groups. As a consequence, this shows that the maximal convergence subgroups of the group of self homeomorphisms of the d–sphere are not unique up to conjugacy. Finally, we discuss some implications of maximality.
We give two charaterizations of the Möbius invariant QK spaces, one in terms of a double integral and the other in terms of the mean oscillation in the Bergman metric. Both charaterizations avoid the use of derivatives. Our results are new even in the case of Qp.
We consider a meromorphic function of finite lower order that has ∞ as its deficient value or as its Borel exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range of measure.
By Pick's invariant form of Schwarz's lemma, an analytic function B (z) which is bounded by one in the unit disk D = {z: |z| < 1} satisfies the inequality
at each point α of D. Recently, several authors [2, 10, 11] have obtained more general estimates for higher order derivatives. Best possible estimates are due to Ruscheweyh [12]. Below in §2 we use a Hilbert space method to derive Ruscheweyh's results. The operator method applies equally well to operator-valued functions, and this generalization is outlined in §3.
For 0 < p < ∞, we let pp−1 denote the space of those functions f that are analytic in the unit disc Δ = {z ∈ C: |z| < 1} and satisfy ∫Δ(1 – |z|)p−1|f′(z)|pdx dy < ∞ The spaces pp−1 are closely related to Hardy spaces. We have, p−1p ⊂ Hp, if 0 < p ≦ 2, and Hp ⊂ pp−1, if 2 ≦ p < ∞. In this paper we obtain a number of results about the Taylor coefficients of pp-1 -functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
For α > 0 let α denote the set of functions which can be expressed where μ is a complex-valued Borel measure on the unit circle. We show that if f is an analytic function in Δ = {z ∈ : |z| < 1} and there are two nonparallel rays in /f(Δ) which do not meet, then f ∈ α where απ denotes the largest of the two angles determined by the rays. Also if the range of a function analytic in Δ is contained in an angular wedge of opening απ and 1 < α < 2, then f ∈ α.
This paper presents two natural extensions of the topology of the space of scalar meromorphic functions M(Ω) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functions M(ΩE). When E is locally complete and does not contain copies of ω we compare these topologies with the topology induced by the representation M (Ω, E) ≃ M(Ω)ε E recently obtained by Bonet, Maestre and the author.
In 1959 Hayman proved an inequality from which it follows that if f is transcendental and meromorphic in the plane then either f takes every finite complex value infinitely often or each derivative f(k), k ≥1, takes every finite non-zero value infinitely often. We investigate the extent to which these values may be ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken into account.
In this paper, we prove that for a transcendental meromorphic function f(z) on the complex plane, the inequality T(r, f) < 6N (r, 1/(f2 f(k)−1)) + S(r, f) holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let ℱ be a family of meromorphic functions on a domain D and let k be a positive integer. If for each ℱ ∈ ℱ, all zeros of ℱ are of multiplicity at least k, and f2 f(k) ≠ 1 for z ∈ D, then ℱ is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.
In this paper we continue our previous studies and derive all possible expressions for a meromorphic function and its differential polunomials when they share two finite distinct values a1, a2, CM (counting multiplicities) in majority.
Inspired by a statement of W. Luh asserting the existence of entire functions having together with all their derivatives and antiderivatives some kind of additive universality or multiplicative universality on certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we introduce in this paper the new concept of U-operators, which are defined on the space of entire functions. Concrete examples, including differential and antidifferential operators, composition, multiplication and shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal entire functions with gap power series is also strengthened.
We derive in this paper closed formulae for the joint probability generating function of the number of customers in the two FIFO queues of a generalized processor-sharing (GPS) system with two classes of customers arriving according to Poisson processes and requiring exponential service times. In contrast to previous studies published on the GPS system, we show that it is possible to establish explicit expressions for the generating functions of the number of customers in each queue without calling for the formulation of a Riemann–Hilbert problem. We specifically prove that the problem of determining the unknown functions due to the reflecting conditions on the boundaries of the positive quarter plane can be reduced to a Poisson equation. The explicit formulae are then used to derive some characteristics of the GPS system (in particular the tails of the probability distributions of the numbers of customers in each queue).
In this paper, we obtain some normality criteria for families of meromorphic functions that concern the exceptional functions of derivatives, which improve and generalize related results of Gu, Yang, Schwick, Wang-Fang, and Pang-Zalcman. Some examples are given to show the sharpness of our results.
Let k be a positive integer and b a nonzero constant. Suppose that F is a family of meromorphic functions in a domain D. If each function f ∈ F has only zeros of multiplicity at least k + 2 and for any two functions f, g ∈ F, f and g share 0 in D and f(k) and g(k) share b in D, then F is normal in D. The case f ≠ 0, f(k) ≠ b is a celebrated result of Gu.
In this paper, we shall show that the constant in Smale's mean value theorem can be reduced to two for a large class of polynomials which includes the odd polynomials with nonzero linear term.