To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive in this paper closed formulae for the joint probability generating function of the number of customers in the two FIFO queues of a generalized processor-sharing (GPS) system with two classes of customers arriving according to Poisson processes and requiring exponential service times. In contrast to previous studies published on the GPS system, we show that it is possible to establish explicit expressions for the generating functions of the number of customers in each queue without calling for the formulation of a Riemann–Hilbert problem. We specifically prove that the problem of determining the unknown functions due to the reflecting conditions on the boundaries of the positive quarter plane can be reduced to a Poisson equation. The explicit formulae are then used to derive some characteristics of the GPS system (in particular the tails of the probability distributions of the numbers of customers in each queue).
In this paper, we obtain some normality criteria for families of meromorphic functions that concern the exceptional functions of derivatives, which improve and generalize related results of Gu, Yang, Schwick, Wang-Fang, and Pang-Zalcman. Some examples are given to show the sharpness of our results.
Let k be a positive integer and b a nonzero constant. Suppose that F is a family of meromorphic functions in a domain D. If each function f ∈ F has only zeros of multiplicity at least k + 2 and for any two functions f, g ∈ F, f and g share 0 in D and f(k) and g(k) share b in D, then F is normal in D. The case f ≠ 0, f(k) ≠ b is a celebrated result of Gu.
In this paper, we shall show that the constant in Smale's mean value theorem can be reduced to two for a large class of polynomials which includes the odd polynomials with nonzero linear term.
A function is called strongly unbounded on a domain D if there exists a sequence in D on which f and all its derivatives tend to infinity. A result of Gordon is generalized to show that an unbounded analytic function on a quasidisk is always strongly unbounded there.
The connection between Clifford analysis and the Weyl functional calculus for a d-tuple of bounded selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited in which the support has gaps.
We exhibit a canonical geometric pairing of the simple closed curves of the degree three cover of the modular surface, Γ3\ℋ, with the proper single self-intersecting geodesics of Crisp and Moran. This leads to a pairing of fundamental domains for Γ3 with Markoff triples.
The routes of the simple closed geodesics are directly related to the above. We give two parametrizations of these. Combining with work of Cohn, we achieve a listing of all simple closed geodesics of length within any bounded interval. Our method is direct, avoiding the determination of geodesic lengths below the chosen lower bound.
Extremal partitions of domains into configurations of certain to pological form are studied. The extremal value of the weighted sum of reduced moduli of circular domains and digons is obtained. These results are applied to some problems about distortion under bounded conformal maps of the unit disk with two preassigned values.
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
Calderón type reproducing formulae with applications have been studied on one- and higher-dimensional Lipschitz graphs. In this note we study higher order Calderón reproducing formulae on star-shaped and non-star-shaped closed Lipschitz curves and surfaces.
We investigate the location and separation of zeros of certain three-term linear combination of translates of polynomials. In particular, we find an interval of the form I = [−1, 1 + h], h > 0 such that for a polynomial f, all of whose zeros are real, and λ ∈ I, all zeros of f (x + 2ic) + 2λf (x) + f (x – 2ic) are also real.
A point of departure for this paper is the famous theorem of Hermite and Biehler: If f (z) is a polynomial with complex coefficients ak and its zeros zk satisfy Im Zk < 0, then the polynomials with coefficients Re ak, and Im ak have only real zeros.
We generalize this theorem for some entire functions. The entire functions in Theorem 2 and Theorem 3 are of first and second genus respectively.
In this paper we give the definition of a meromorphic function which is geometrically finite and investigate some properties of geometrically finite meromorphic functions and the Lebesgue measure of their Julia sets.
Suppose that f is meromorphic in the plane, and that there is a sequence Zn → ∞ and a sequence of positive numbers ∈n → 0, such that ∈n|zn|f#(zn)/log|zn| → ∞. It is shown that if f is analytic and non-zero in the closed discs Δn = {z: |z – zn| ≦∈n|zn|}, n = 1, 2, 3 …, then, given any positive integer K, there are arbitrarily large values of n and there is a point z in Δn such that │f (z)| 〉 |Z│k. Examples are given to show that the hypotheses cannot be relaxed.
It is shown that, if h and k are harmonic in ℝ2 and there exists a positive constant c so that
in ℝ2, where h+ = max {h, 0}, then it need not follow that h - k is identically a constant. The necessary counterexample is obtained by applying Arakelyan's theorem on approximation by an entire function in certain regions in ℝ2.
Two projective nonsingular complex algebraic curves X and Y defined over the field R of real numbers can be isomorphic while their sets X(R) and Y(R) of R-rational points could be even non homeomorphic. This leads to the count of the number of real forms of a complex algebraic curve X, that is, those nonisomorphic real algebraic curves whose complexifications are isomorphic to X. In this paper we compute, as a function of genus, the maximum number of such real forms that a complex algebraic curve admits.
We develop sharp conditions for various types of starlikeness for functions analytic in the unit disk with bounded derivatives. We also describe the precise range {zf′(z)/f(z): z ∈ D, f ∈ }, where f ∈ means f (0) = 0, f′(0) = 1, and |f′(z) - 1 |< ≦ λ in the unit disc D, and draw some cnoslusions from that.
We characterize the boundedness and compactness of weighted composition operators between weighted Banach spaces of analytic functions and . we estimate the essential norm of a weighted composition operator and compute it for those Banach spaces which are isomorphic to c0. We also show that, when such an operator is not compact, it is an isomorphism on a subspace isomorphic to c0 or l∞. Finally, we apply these results to study composition operators between Bloch type spaces and little Bloch type spaces.
In this paper we prove a number of results on Cauchy transforms of generalized type given by Borel measures supported on the class of analytic functions mapping the unit disc into the unit disk. We also give a BMOA characterization using these families.