We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We complete the investigation of growth properties of analytic functions connected with the Nevanlinna parametrization of the solutions of an indeterminate strong Hamburger moment problem.
There are only finitely many non-constant holomorphic mappings between two fixed compact Riemann surfaces of genus greater than 1. This result goes under the name of the de Franchis theorem. Having seen that the set of such holomorphic mappings is finite, we naturally want to obtain a bound on its cardinality. It has been known for some time that there exist various bounds depending only on the genera of the surfaces. Here we obtain ‘better’ bounds of the above type, using arguments based on the rigidity of holomorphic mappings and the hyperbolic geometry of surfaces.
We prove that if two transcendental meromorphic functions share all limit values from a set of positive linear measure on a rectifiable Jordan arc, then they share all limit values.
Functions in the meromorphic Besov, Qp and related classes are characterized in terms of double integrals of certain oscillation quantities involving chordal distances. Some of the results are analogous to the corresponding results in the analytic case.
This note contains a proof of the fact that a Jordan curve in ℝ2 with a continuous tangent line at each point admits a regular reparameterization. We extend the result both to more general curves in ℝn and to higher orders of differentiability.
Let F(z) be a rational map with degree at least three. Suppose that there exists an annulus such that (1) H separates two critical points of F, and (2) F:H→F(H) is a homeomorphism. Our goal in this paper is to show how to construct a rational map G by twisting F on H such that G has the same degree as F and, moreover, G has a Herman ring with any given Diophantine type rotation number.
J. W. Anderson (1996) asked whether two finitely generated Kleinian groups with the same set of axes are commensurable. We give some partial solutions.
In this paper, we study the discreteness criteria for nonelementary subgroups of U(1,n;ℂ) acting on complex hyperbolic space. Several discreteness criteria are obtained. As applications, we obtain a classification of nonelementary subgroups of U(1,n;ℂ) and show that any dense subgroup of SU(1,n;ℂ) contains a dense subgroup generated by at most n elements when n≥2. We also obtain a necessary and sufficient condition for the normalizer of a discrete and nonelementary subgroup in SU(1,n;ℂ) to be discrete.
Much research has been done on the geometry of Teichmüller space and Hamilton sequences of extremal Beltrami differentials. This paper discusses some problems concerning infinitesimal Teichmüller geodesic discs and Hamilton sequences of extremal Beltrami differentials in the tangent space of an infinite-dimensional Teichmüller space.
Using Ahlfors’ theory of covering surfaces, we prove the existence theorem for the T direction for algebroid functions dealing with multiple values which extends the results proved by Guo, Zheng and Ng and answers a question by Wang, Giao and the present authors.
In this paper we deduce a universal result about the asymptotic distribution of roots of random polynomials, which can be seen as a complement to an old and famous result of Erdős and Turan. More precisely, given a sequence of random polynomials, we show that, under some very general conditions, the roots tend to cluster near the unit circle, and their angles are uniformly distributed. The method we use is deterministic: in particular, we do not assume independence or equidistribution of the coefficients of the polynomial.
We prove that under a sharp growth condition meromorphic functions posses a direction such that at most four rational functions are completely ramified in any sector containing the direction.
In this paper, one model of the universal Teichmüller space is studied. By the method of construction, the lower bound of the inner radius of univalency by the Pre-Schwarzian derivative of quasidisks with infinity as an inner point (such as domains bounded by ellipses) is obtained.
Let f and g be two permutable transcendental entire functions. Assume that f is a solution of a linear differential equation with polynomial coefficients. We prove that, under some restrictions on the coefficients and the growth of f and g, there exist two non-constant rational functions R1 and R2 such that R1 (f) = R(g). As a corollary, we show that f and g have the same Julia set: J(f) = J(g). As an application, we study a function f which is a combination of exponential functions with polynomial coefficients. This research addresses an open question due to Baker.
An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature (), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.
In this paper we treat transcendental meromorphic solutions of some algebraic differential equations. We consider the number of distinct transcendental meromorphic solutions. Algebraic relations between meromorphic solutions and comparisons of the growth of transcendental meromorphic solutions are also discussed.
We show that the group of conformal homeomorphisms of the boundary of a rank one symmetric space (except the hyperbolic plane) of noncompact type acts as a maximal convergence group. Moreover, we show that any family of uniformly quasiconformal homeomorphisms has the convergence property. Our theorems generalize results of Gehring and Martin in the real hyperbolic case for Möbius groups. As a consequence, this shows that the maximal convergence subgroups of the group of self homeomorphisms of the d–sphere are not unique up to conjugacy. Finally, we discuss some implications of maximality.
We give two charaterizations of the Möbius invariant QK spaces, one in terms of a double integral and the other in terms of the mean oscillation in the Bergman metric. Both charaterizations avoid the use of derivatives. Our results are new even in the case of Qp.
We consider a meromorphic function of finite lower order that has ∞ as its deficient value or as its Borel exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range of measure.
By Pick's invariant form of Schwarz's lemma, an analytic function B (z) which is bounded by one in the unit disk D = {z: |z| < 1} satisfies the inequality
at each point α of D. Recently, several authors [2, 10, 11] have obtained more general estimates for higher order derivatives. Best possible estimates are due to Ruscheweyh [12]. Below in §2 we use a Hilbert space method to derive Ruscheweyh's results. The operator method applies equally well to operator-valued functions, and this generalization is outlined in §3.