To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that a system of homogeneous second-order ordinary differential equations (spray) is necessarily isotropic in order to be metrizable by a Finsler function of scalar flag curvature. In our main result we show that the isotropy condition, together with three other conditions on the Jacobi endomorphism, characterize sprays that are metrizable by Finsler functions of scalar flag curvature. We call these conditions the scalar flag curvature (SFC) test. The proof of the main result provides an algorithm to construct the Finsler function of scalar flag curvature, in the case when a given spray is metrizable. Hilbert’s fourth problem asks to determine the Finsler functions with rectilinear geodesics. A Finsler function that is a solution to Hilbert’s fourth problem is necessarily of constant or scalar flag curvature. Therefore, we can use the constant flag curvature (CFC) test, which we developed in our previous paper, Bucataru and Muzsnay [‘Sprays metrizable by Finsler functions of constant flag curvature’, Differential Geom. Appl.31 (3)(2013), 405–415] as well as the SFC test to decide whether or not the projective deformations of a flat spray, which are isotropic, are metrizable by Finsler functions of constant or scalar flag curvature. We show how to use the algorithms provided by the CFC and SFC tests to construct solutions to Hilbert’s fourth problem.
Since the foundational work of Chenciner and Montgomery in 2000 there has been a great deal of interest in choreographic solutions of the $n$-body problem: periodic motions where the $n$ bodies all follow one another at regular intervals along a closed path. The principal approach combines variational methods with symmetry properties. In this paper, we give a systematic treatment of the symmetry aspect. In the first part, we classify all possible symmetry groups of planar $n$-body collision-free choreographies. These symmetry groups fall into two infinite families and, if $n$ is odd, three exceptional groups. In the second part, we develop the equivariant fundamental group and use it to determine the topology of the space of loops with a given symmetry, which we show is related to certain cosets of the pure braid group in the full braid group, and to centralizers of elements of the corresponding coset. In particular, we refine the symmetry classification by classifying the connected components of the set of loops with any given symmetry. This leads to the existence of many new choreographies in $n$-body systems governed by a strong force potential.
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a reaction term which exhibits a (p – 1)-superlinear growth near ±∞ but need not satisfy the Ambrosetti-Rabinowitz condition. Combining critical point theory with Morse theory we prove an existence theorem. Then, using variational methods together with truncation techniques, we prove a multiplicity theorem establishing the existence of at least five non-trivial solutions, with precise sign information for all of them (two positive solutions, two negative solutions and a nodal (sign changing) solution).
This work is a continuation of the author’s previous paper [Greatest lower bounds on the Ricci curvature of toric Fano manifolds, Adv. Math. 226 (2011), 4921–4932]. On any toric Fano manifold, we discuss the behavior of the limit metric of a sequence of metrics which are solutions to a continuity family of complex Monge–Ampère equations in the Kähler–Einstein problem. We show that the limit metric satisfies a singular complex Monge–Ampère equation. This gives a conic-type singularity for the limit metric. Information on conic-type singularities can be read off from the geometry of the moment polytope.
The Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler–Lagrange equations associated to the energy with the effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In particular, we give the existence and uniqueness of global solutions of the initial-value problem for the Euler–Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to that of infinite length.
We study the problem −∆pu = f(x, u) + t in Ω with Neumann boundary condition |∇u|p−2(∂u/∂v) = 0 on ∂Ω. There exists a t0 ∈ ℝ such that for t > t0 there is no solution. If t ≤ t0, there is at least a minimal solution, and for t < t0 there are at least two distinct solutions. We use the sub–supersolution method, a priori estimates and degree theory.
We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.
We study compatible toric Sasaki metrics with constant scalar curvature on co-oriented compact toric contact manifolds of Reeb type of dimension at least five. These metrics come in rays of transversal homothety due to the possible rescaling of the Reeb vector fields. We prove that there exist Reeb vector fields for which the transversal Futaki invariant (restricted to the Lie algebra of the torus) vanishes. Using an existence result of E. Legendre [Toric geometry of convex quadrilaterals, J. Symplectic Geom. 9 (2011), 343–385], we show that a co-oriented compact toric contact 5-manifold whose moment cone has four facets admits a finite number of rays of transversal homothetic compatible toric Sasaki metrics with constant scalar curvature. We point out a family of well-known toric contact structures on S2×S3 admitting two non-isometric and non-transversally homothetic compatible toric Sasaki metrics with constant scalar curvature.
We define a new functional which is gauge invariant on the space of all smooth connections of a vector bundle over a compact Riemannian manifold. This functional is a generalization of the classical Yang-Mills functional. We derive its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
We find necessary and sufficient conditions for a Legendre curve in a Sasakian manifold to have: (i) a pseudo-Hermitian parallel mean curvature vector field; (ii) a pseudo-Hermitian proper mean curvature vector field in the normal bundle.
We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0,λ*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concave–convex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and ℝ). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
Suppose that X is a smooth quasiprojective variety over ℂ and ρ:π1(X,x)→SL(2,ℂ) is a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ρ factors through a map X→Y with Y either a Deligne–Mumford (DM) curve or a Shimura modular stack.
We prove that a domain Ω in the exterior of a convex domain C in a four-dimensional simply connected Riemannian manifold of nonpositive sectional curvature satisfies the relative isoperimetric inequality 64π2 Vol(Ω)3 < Vol(∂Ω ~ ∂C)4. Equality holds if and only if Ω is an Euclidean half ball and ∂Ω ~ ∂C is a hemisphere.
In this paper we complete two tasks. First we extend the nonsmooth critical point theory of Chang to the case where the energy functional satisfies only the weaker nonsmooth Cerami condition and we also relax the boundary conditions. Then we study semilinear and quasilinear equations (involving the p-Laplacian). Using a variational approach we establish the existence of one and of multiple solutions. In simple existence theorems, we allow the right hand side to be discontinuous. In that case in order to have an existence theory, we pass to a multivalued approximation of the original problem by, roughly speaking, filling in the gaps at the discontinuity points.
Let M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.
In this paper we describe the moduli spaces of degree d branched superminimal immersions of a compact Riemann surface of genus g into S4. We prove that when d ≥ max {2g, g + 2}, such spaces have the structure of projectivzed fibre products and are path-connected quasi projective varieties of dimension 2d − g + 4. This generalizes known results for spaces of harmonic 2-spheres in S4.