To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a generating function approach to the affine Brauer and Kauffman categories, and show how it allows one to efficiently recover important sets of relations in these categories. We use this formalism to deduce restrictions on possible categorical actions and show how this recovers admissibility results that have appeared in the literature on cyclotomic Birman–Murakami–Wenzl (BMW) algebras and their degenerate versions, also known as cyclotomic Nazarov–Wenzl algebras or VW algebras.
We study the geometry induced on the local orbit spaces of Killing vector fields on (Riemannian) $G$-manifolds, with an emphasis on the cases $G=\textrm {Spin}(7)$ and $G=G_2$. Along the way, we classify the harmonic morphisms with one-dimensional fibres from $G_2$-manifolds to Einstein manifolds.
Let G be an affine algebraic group over an algebraically closed field of positive characteristic. Recent work of Hardesty, Nakano, and Sobaje gives necessary and sufficient conditions for the existence of so-called mock injective G-modules, that is, modules which are injective upon restriction to all Frobenius kernels of G. In this article, we give analogous results for contramodules, including showing that the same necessary and sufficient conditions on G guarantee the existence of mock projective contramodules. In order to do this, we first develop contramodule analogs to many well-known (co)module constructions.
Let ${\mathscr {G}} $ be a special parahoric group scheme of twisted type over the ring of formal power series over $\mathbb {C}$, excluding the absolutely special case of $A^{(2)}_{2\ell }$. Using the methods and results of Zhu, we prove a duality theorem for general ${\mathscr {G}} $: there is a duality between the level one twisted affine Demazure modules and the function rings of certain torus fixed point subschemes in affine Schubert varieties for ${\mathscr {G}} $. Along the way, we also establish the duality theorem for $E_6$. As a consequence, we determine the smooth locus of any affine Schubert variety in the affine Grassmannian of ${\mathscr {G}} $. In particular, this confirms a conjecture of Haines and Richarz.
We compute the co-multiplication of the algebraic Morava K-theory for split orthogonal groups. This allows us to compute the decomposition of the Morava motives of generic maximal orthogonal Grassmannians and to compute a Morava K-theory analogue of the J-invariant in terms of the ordinary (Chow) J-invariant.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of $\mathrm {GL}(n) \times \mathrm {GL}(n')$ over a totally imaginary field $F.$ The proof is based on a cohomological interpretation of Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group $\mathrm {GL}(N)/F,$ where $N = n+n'.$ The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties of the critical values.
We study simple Lie algebras generated by extremal elements, over arbitrary fields of arbitrary characteristic. We show the following: (1) If the extremal geometry contains lines, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a cubic norm structure; (2) If there exists a field extension of degree at most $2$ such that the extremal geometry over that field extension contains lines, and in addition, there exist symplectic pairs of extremal elements, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a quadrangular algebra.
One of our key tools is a new definition of exponential maps that makes sense even over fields of characteristic $2$ and $3$, which ought to be interesting in its own right.
Not only was Jacques Tits a constant source of inspirationthrough his work, he also had a direct personal influence,notably through his threat to speak evil of our work if it did notinclude the characteristic 2 case.
In their 1988 paper ‘Gluing of perverse sheaves and discrete series representations’, D. Kazhdan and G. Laumon constructed an abelian category $\mathcal{A}$ associated to a reductive group G over a finite field with the aim of using it to construct discrete series representations of the finite Chevalley group $G(\mathbb{F}_q)$. The well-definedness of their construction depended on their conjecture that this category has finite cohomological dimension. This was disproved in 2001 by R. Bezrukavnikov and A. Polishchuk, who found a counterexample in the case $G = SL_3$. Polishchuk then made an alternative conjecture: though this counterexample shows that the Grothendieck group $K_0(\mathcal{A})$ is not spanned by objects of finite projective dimension, he noted that a graded version of $K_0(\mathcal{A})$ can be thought of as a module over Laurent polynomials and conjectured that a certain localization of this module is generated by objects of finite projective dimension, and suggested that this conjecture could lead toward a proof that Kazhdan and Laumon’s construction is well defined. He proved this conjecture in Types $A_1, A_2, A_3$, and $B_2$. In the present paper, we prove Polishchuk’s conjecture for all types, and prove that Kazhdan and Laumon’s construction is indeed well defined, giving a new geometric construction of discrete series representations of $G(\mathbb{F}_q)$.
Restriction is a natural quasi-order on d-way tensors. We establish a remarkable aspect of this quasi-order in the case of tensors over a fixed finite field; namely, that it is a well-quasi-order: it admits no infinite antichains and no infinite strictly decreasing sequences. This result, reminiscent of the graph minor theorem, has important consequences for an arbitrary restriction-closed tensor property X. For instance, X admits a characterisation by finitely many forbidden restrictions and can be tested by looking at subtensors of a fixed size. Our proof involves an induction over polynomial generic representations, establishes a generalisation of the tensor restriction theorem to other such representations (e.g., homogeneous polynomials of a fixed degree), and also describes the coarse structure of any restriction-closed property.
We introduce a new algebra $\mathcal {U}=\dot {\mathrm {\mathbf{U}}}_{0,N}(L\mathfrak {sl}_n)$ called the shifted $0$-affine algebra, which emerges naturally from studying coherent sheaves on n-step partial flag varieties through natural correspondences. This algebra $\mathcal {U}$ has a similar presentation to the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk. Then, we construct a categorical $\mathcal {U}$-action on a certain 2-category arising from derived categories of coherent sheaves on n-step partial flag varieties. As an application, we construct a categorical action of the affine $0$-Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
In an earlier work, we defined a “generalised Temperley–Lieb algebra” $TL_{r, 1, n}$ corresponding to the imprimitive reflection group G(r, 1, n) as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley–Lieb algebra $TL_{r, p, n}$ which corresponds to the complex reflection group G(r, p, n). Our definition identifies $TL_{r, p, n}$ as the fixed-point subalgebra of $TL_{r, 1, n}$ under a certain automorphism $\sigma$. We prove the cellularity of $TL_{r, p, n}$ by proving that $\sigma$ induces a special shift automorphism with respect to the cellular structure of $TL_{r, 1, n}$. We also give a description of the cell modules of $TL_{r, p, n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.
We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.
We determine the cohomology of the closed Drinfeld stratum of p-adic Deligne–Lusztig schemes of Coxeter type attached to arbitrary inner forms of unramified groups over a local non-archimedean field. We prove that the corresponding torus weight spaces are supported in exactly one cohomological degree and are pairwise non-isomorphic irreducible representations of the pro-unipotent radical of the corresponding parahoric subgroup. We also prove that all Moy–Prasad quotients of this stratum are maximal varieties, and we investigate the relation between the resulting representations and Kirillov’s orbit method.
We investigate properties of closed approximate subgroups of locally compact groups, with a particular interest for approximate lattices (i.e., those approximate subgroups that are discrete and have finite co-volume).
We prove an approximate subgroup version of Cartan’s closed-subgroup theorem and study some applications. We give a structure theorem for closed approximate subgroups of amenable groups in the spirit of the Breuillard–Green–Tao theorem. We then prove two results concerning approximate lattices: we extend to amenable groups a structure theorem for mathematical quasi-crystals due to Meyer; we prove results concerning intersections of radicals of Lie groups and discrete approximate subgroups generalising theorems due to Auslander, Bieberbach and Mostow. As an underlying theme, we exploit the notion of good models of approximate subgroups that stems from the work of Hrushovski, and Breuillard, Green and Tao. We show how one can draw information about a given approximate subgroup from a good model, when it exists.
In this paper, we compare the $\mathbb J$-stratification (or the semi-module stratification) and the Ekedahl–Oort stratification of affine Deligne–Lusztig varieties in the superbasic case. In particular, we classify the cases where the $\mathbb J$-stratification gives a refinement of the Ekedahl–Oort stratification, which include many interesting cases such that the affine Deligne-Lusztig variety admits a simple geometric structure.
We define oriented Temperley–Lieb algebras for Hermitian symmetric spaces. This allows us to explain the existence of closed combinatorial formulae for the Kazhdan–Lusztig polynomials for these spaces.
Let be a commutative ring containing a primitive $l'$th root $\varepsilon $ of $1$. The infinitesimal q-Schur algebras over form an ascending chain of subalgebras of the q-Schur algebra , which are useful in studying representations of the Frobenius kernel of the associated quantum linear group. Let be the quantized enveloping algebra of $\mathfrak {gl}_n$ over . There is a natural surjective algebra homomorphism $\zeta _{d}$ from to . The map $\zeta _{d}$ restricts to a surjective algebra homomorphism $\zeta _{d,r}$ from to , where is a certain Hopf subalgebra of , which is closely related to Frobenius–Lusztig kernels of . We give the extra defining relations needed to define the infinitesimal q-Schur algebra as a quotient of . The map $\zeta _{d,r}$ induces a surjective algebra homomorphism , where is the modified quantum algebra associated with . We also give a generating set for the kernel of $\dot {\zeta }_{d,r}$. These results can be used to give a classification of irreducible -modules over a field of characteristic p.
Let $\mathbf {G}$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk $ and ${\mathbf B}$ be a Borel subgroup of ${\mathbf G}$. In this paper, we completely determine the composition factors of the permutation module $\mathbb {F}[{\mathbf G}/{\mathbf B}]$ for any field $\mathbb {F}$.