To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Within the determinacy setting, ${\mathscr {P}({\omega _1})}$ is regular (in the sense of cofinality) with respect to many known cardinalities and thus there is substantial evidence to support the conjecture that ${\mathscr {P}({\omega _1})}$ has globally regular cardinality. However, there is no known information about the regularity of ${\mathscr {P}(\omega _2)}$. It is not known if ${\mathscr {P}(\omega _2)}$ is even $2$-regular under any determinacy assumptions. The article will provide the following evidence that ${\mathscr {P}(\omega _2)}$ may possibly be ${\omega _1}$-regular: Assume $\mathsf {AD}^+$. If $\langle A_\alpha : \alpha < {\omega _1} \rangle $ is such that ${\mathscr {P}(\omega _2)} = \bigcup _{\alpha < {\omega _1}} A_\alpha $, then there is an $\alpha < {\omega _1}$ so that $\neg (|A_\alpha | \leq |[\omega _2]^{<\omega _2}|)$.
We build on a 1990 paper of Bukovský and Copláková-Hartová. First, we remove the hypothesis of ${\mathsf {CH}}$ from one of their minimality results. Then, using a measurable cardinal, we show that there is a $|\aleph _2^V|=\aleph _1$-minimal extension that is not a $|\aleph _3^V|=\aleph _1$-extension, answering the first of their questions.
For any $2 \le n < \omega $, we introduce a forcing poset using generalized promises which adds a normal n-splitting subtree to a $(\ge \! n)$-splitting normal Aronszajn tree. Using this forcing poset, we prove several consistency results concerning finitely splitting subtrees of Aronszajn trees. For example, it is consistent that there exists an infinitely splitting Suslin tree whose topological square is not Lindelöf, which solves an open problem due to Marun. For any $2 < n < \omega $, it is consistent that every $(\ge \! n)$-splitting normal Aronszajn tree contains a normal n-splitting subtree, but there exists a normal infinitely splitting Aronszajn tree which contains no $(< \! n)$-splitting subtree. To show the latter consistency result, we prove a forcing iteration preservation theorem related to not adding new small-splitting subtrees of Aronszajn trees.
We investigate the notion of ideal (equivalently: filter) Schauder basis of a Banach space. We do so by providing bunch of new examples of such bases that are not the standard ones, especially within classical Banach spaces ($\ell _p$, $c_0$, and James’ space). Those examples lead to distinguishing and characterizing ideals (equivalently: filters) in terms of Schauder bases. We investigate the relationship between possibly basic sequences and ideals (equivalently: filters) on the set of natural numbers.
For cardinals $\mathfrak {a}$ and $\mathfrak {b}$, we write $\mathfrak {a}=^\ast \mathfrak {b}$ if there are sets A and B of cardinalities $\mathfrak {a}$ and $\mathfrak {b}$, respectively, such that there are partial surjections from A onto B and from B onto A. $=^\ast $-equivalence classes are called surjective cardinals. In this article, we show that $\mathsf {ZF}+\mathsf {DC}_\kappa $, where $\kappa $ is a fixed aleph, cannot prove that surjective cardinals form a cardinal algebra, which gives a negative solution to a question proposed by Truss [J. Truss, Ann. Pure Appl. Logic 27, 165–207 (1984)]. Nevertheless, we show that surjective cardinals form a “surjective cardinal algebra”, whose postulates are almost the same as those of a cardinal algebra, except that the refinement postulate is replaced by the finite refinement postulate. This yields a smoother proof of the cancellation law for surjective cardinals, which states that $m\cdot \mathfrak {a}=^\ast m\cdot \mathfrak {b}$ implies $\mathfrak {a}=^\ast \mathfrak {b}$ for all cardinals $\mathfrak {a},\mathfrak {b}$ and all nonzero natural numbers m.
We investigate some variants of the splitting, reaping, and independence numbers defined using asymptotic density. Specifically, we give a proof of Con($\mathfrak {i}<\mathfrak {s}_{1/2}$), Con($\mathfrak {r}_{1/2}<\mathfrak {b}$), and Con($\mathfrak {i}_*<2^{\aleph _0}$). This answers two questions raised in [5]. Besides, we prove the consistency of $\mathfrak {s}_{1/2}^{\infty } < $ non$(\mathcal {E})$ and cov$(\mathcal {E}) < \mathfrak {r}_{1/2}^{\infty }$, where $\mathcal {E}$ is the $\sigma $-ideal generated by closed sets of measure zero.
We prove that P-points (even strong P-points) and Gruff ultrafilters exist in any forcing extension obtained by adding fewer than $\aleph _{\omega } $-many random reals to a model of CH.These results improve and correct previous theorems that can be found in the literature.
In this work, we consider the ideals $m^0(\mathcal {I})$ and $\ell ^0(\mathcal {I})$, ideals generated by the $\mathcal {I}$-positive Miller trees and $\mathcal {I}$-positive Laver trees, respectively. We investigate in which cases these ideals have cofinality larger than $\mathfrak {c}$ and we calculate some cardinal invariants closely related to these ideals.
We initiate the study of the spectrum of sets that can be realized as the vanishing levels $V(\mathbf T)$ of a normal $\kappa $-tree $\mathbf T$. This is an invariant in the sense that if $\mathbf T$ and $\mathbf T'$ are club-isomorphic, then $V(\mathbf T)\mathbin {\bigtriangleup } V(\mathbf T')$ is nonstationary. Additional features of this invariant imply that the spectrum is closed under finite unions and intersections. The set $V(\mathbf T)$ must be stationary for a homogeneous normal $\kappa $-Aronszajn tree $\mathbf T$, and if there exists a special $\kappa $-Aronszajn tree, then there exists one $\mathbf T$ that is homogeneous and satisfies that $V(\mathbf T)$ covers a club in $\kappa $. It is consistent (from large cardinals) that there is an $\aleph _2$-Souslin tree, and yet $V(\mathbf T)$ is co-stationary for every $\aleph _2$-tree $\mathbf T$. Both $V(\mathbf T)=\emptyset $ and $V(\mathbf T)=\kappa $ (modulo nonstationary) are shown to be feasible using $\kappa $-Souslin trees, even at some large cardinal close to a weakly compact. It is also possible to have a family of $2^\kappa $ many $\kappa $-Souslin trees for which the corresponding family of vanishing levels forms an antichain in the Boolean algebra of the powerset of $\kappa $, modulo the nonstationary ideal.
We show, assuming PD, that every complete finitely axiomatized second-order theory with a countable model is categorical, but that there is, assuming again PD, a complete recursively axiomatized second-order theory with a countable model which is non-categorical. We show that the existence of even very large (e.g., supercompact) cardinals does not imply the categoricity of all finitely axiomatizable complete second-order theories. More exactly, we show that a non-categorical complete finitely axiomatized second-order theory can always be obtained by (set) forcing. We also show that the categoricity of all finite complete second-order theories with a model of a certain singular cardinality $\kappa $ of uncountable cofinality can be forced over any model of set theory. Previously, Solovay had proved, assuming $V=L$, that every complete finitely axiomatized second-order theory (with or without a countable model) is categorical, and that in a generic extension of L there is a complete finitely axiomatized second-order theory with a countable model which is non-categorical.
We prove that every $\Sigma ^0_2$ Gale-Stewart game can be won via a winning strategy $\tau $ which is $\Delta _1$-definable over $L_{\delta }$, the $\delta $th stage of Gödel’s constructible universe, where $\delta = \delta _{\sigma ^1_1}$, strengthening a theorem of Solovay from the 1970s. Moreover, the bound is sharp in the sense that there is a $\Sigma ^0_2$ game with no strategy $\tau $ which is witnessed to be winning by an element of $L_{\delta }$.
Can we quantify over absolutely every set? Absolutists typically affirm, while relativists typically deny, the possibility of unrestricted quantification (in set theory). In the first part of this article, I develop a novel and intermediate philosophical position in the absolutism versus relativism debate in set theory. In a nutshell, the idea is that problematic sentences related to paradoxes cannot be interpreted with unrestricted quantifier domains, while prima facie absolutist sentences (e.g., “no set is contained in the empty set”) are unproblematic in this respect and can be interpreted over a domain containing all sets. In the second part of the paper, I develop a semantic theory that can implement the intermediate position. The resulting framework allows us to distinguish between inherently absolutist and inherently relativist sentences of the language of set theory.
The Fregean ontology can be naturally interpreted within set theory with urelements, where objects correspond to sets and urelements, and concepts to classes. Consequently, Fregean abstraction principles can be formulated as set-theoretic principles. We investigate how the size of reality—i.e., the number of urelements—interacts with these principles. We show that Basic Law V implies that for some well-ordered cardinal $\kappa $, there is no set of urelements of size $\kappa $. Building on recent work by Hamkins [10], we show that, under certain additional axioms, Basic Law V holds if and only if the urelements form a set. We construct models of urelement set theory in which the Reflection Principle holds while Hume’s Principle fails for sets. Additionally, assuming the consistency of an inaccessible cardinal, we produce a model of Kelley–Morse class theory with urelements that has a global well-ordering but lacks a definable map satisfying Hume’s Principle for classes.
Let $\Gamma $ be a compact Polish group of finite topological dimension. For a countably infinite subset $S\subseteq \Gamma $, a domatic$\aleph _0$-partition (for its Schreier graph on $\Gamma $) is a partial function $f:\Gamma \rightharpoonup \mathbb {N}$ such that for every $x\in \Gamma $, one has $f[S\cdot x]=\mathbb {N}$. We show that a continuous domatic $\aleph _0$-partition exists, if and only if a Baire measurable domatic $\aleph _0$-partition exists, if and only if the topological closure of S is uncountable. A Haar measurable domatic $\aleph _0$-partition exists for all choices of S. We also investigate domatic partitions in the general descriptive graph combinatorial setting.
Denote by $\mathcal {NA}$ and $\mathcal {MA}$ the ideals of null-additive and meager-additive subsets of $2^{\omega }$, respectively. We prove in ZFC that $\mathrm {add}(\mathcal {NA})=\mathrm {non}(\mathcal {NA})$ and introduce a new (Polish) relational system to reformulate Bartoszyński’s and Judah’s characterization of the uniformity of $\mathcal {MA}$, which is helpful to understand the combinatorics of $\mathcal {MA}$ and to prove consistency results. As for the latter, we prove that $\mathrm {cov}(\mathcal {MA})<\mathfrak {c}$ (even $\mathrm {cov}(\mathcal {MA})<\mathrm {non}(\mathcal {N})$) is consistent with ZFC, as well as several constellations of Cichoń’s diagram with $\mathrm {non}(\mathcal {NA})$, $\mathrm {non}(\mathcal {MA}),$ and $\mathrm {add}(\mathcal {SN})$, which include $\mathrm {non}(\mathcal {NA})<\mathfrak {b}< \mathrm {non}(\mathcal {MA})$ and $\mathfrak {b}< \mathrm {add}(\mathcal {SN})<\mathrm {cov}(\mathcal {M})<\mathfrak {d}=\mathfrak {c}$.
We study a family of variants of Jensen’s subcomplete forcing axiom, $\mathsf {SCFA,}$ and subproper forcing axiom, $\mathsf {SubPFA}$. Using these, we develop a general technique for proving nonimplications of $\mathsf {SCFA}$, $\mathsf {SubPFA}$ and their relatives and give several applications. For instance, we show that $\mathsf {SCFA}$ does not imply $\mathsf {MA}^+(\sigma $-closed) and $\mathsf {SubPFA}$ does not imply Martin’s Maximum.
Following [1], given cardinals $\kappa <\lambda $, we say $\kappa $ is a club $\lambda $-Berkeley cardinal if for every transitive set N of size $<\lambda $ such that $\kappa \subseteq N$, there is a club $C\subseteq \kappa $ with the property that for every $\eta \in C$, there is an elementary embedding $j: N\rightarrow N$ with $\mathrm {crit }(j)=\eta $. We say $\kappa $ is $\nu $-club $\lambda $-Berkeley if $C\subseteq \kappa $ as above is a $\nu $-club. We say $\kappa $ is $\lambda $-Berkeley if C is unbounded in $\kappa $. We show that under $\textsf {AD}^{+}$, (1) every regular Suslin cardinal is $\omega $-club $\Theta $-Berkeley (see Theorem 7.1), (2) $\omega _1$ is club $\Theta $-Berkeley (see Theorem 3.1 and Theorem 7.1), and (3) the ’s are $\Theta $-Berkeley – in particular, $\omega _2$ is $\Theta $-Berkeley (see Remark 7.5).
Along the way, we represent regular Suslin cardinals in direct limits as cutpoint cardinals (see Theorem 5.1). This topic has been studied in [31] and [4], albeit from a different point of view. We also show that, assuming $V=L({\mathbb {R}})+{\textsf {AD}}$, $\omega _1$ is not $\Theta ^+$-Berkeley, so the result stated in the title is optimal (see Theorem 9.14 and Theorem 9.19).
We prove two compactness theorems for HOD. First, if $\kappa $ is a strong limit singular cardinal with uncountable cofinality and for stationarily many $\delta <\kappa $, $(\delta ^+)^{\mathrm {HOD}}=\delta ^+$, then $(\kappa ^+)^{\mathrm {HOD}}=\kappa ^+$. Second, if $\kappa $ is a singular cardinal with uncountable cofinality and stationarily many $\delta <\kappa $ are singular in $\operatorname {\mathrm {HOD}}$, then $\kappa $ is singular in $\operatorname {\mathrm {HOD}}$. We also discuss the optimality of these results and show that the first theorem does not extend from $\operatorname {\mathrm {HOD}}$ to other $\omega $-club amenable inner models.
The consistency of the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is universally Baire’ is proved relative to $\mathsf {ZFC} + {}$‘there is a cardinal that is a limit of Woodin cardinals and of strong cardinals’. The proof is based on the derived model construction, which was used by Woodin to show that the theory $\mathsf {ZF} + \mathsf {AD}_{\mathbb {R}} + {}$‘every set of reals is Suslin’ is consistent relative to $\mathsf {ZFC} + {}$‘there is a cardinal $\lambda $ that is a limit of Woodin cardinals and of $\mathord {<}\lambda $-strong cardinals’. The $\Sigma ^2_1$ reflection property of our model is proved using genericity iterations as in Neeman [18] and Steel [22].