We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a variety with a Whitney stratification by affine spaces, we study categories of motivic sheaves which are constant mixed Tate along the strata. We are particularly interested in those cases where the category of mixed Tate motives over a point is equivalent to the category of finite-dimensional bigraded vector spaces. Examples of such situations include rational motives on varieties over finite fields and modules over the spectrum representing the semisimplification of de Rham cohomology for varieties over the complex numbers. We show that our categories of stratified mixed Tate motives have a natural weight structure. Under an additional assumption of pointwise purity for objects of the heart, tilting gives an equivalence between stratified mixed Tate sheaves and the bounded homotopy category of the heart of the weight structure. Specializing to the case of flag varieties, we find natural geometric interpretations of graded category ${\mathcal{O}}$ and Koszul duality.
Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and$q$-intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$, where $\mathfrak{g}\subset SH^{1}(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH^{1}(M)$. This allows us to study a mirror theory to classical constructions of Borel, Weil and Bott. We give explicit computations recovering all finite-dimensional irreducible representations of $\mathfrak{sl}_{2}$ as representations on the Floer cohomology of an $\mathfrak{sl}_{2}$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.
We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$, i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J.154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$-stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$.
Let ${\rm\Gamma}$ be a finite subgroup of $\text{Sp}(V)$. In this article we count the number of symplectic resolutions admitted by the quotient singularity $V/{\rm\Gamma}$. Our approach is to compare the universal Poisson deformation of the symplectic quotient singularity with the deformation given by the Calogero–Moser space. In this way, we give a simple formula for the number of $\mathbb{Q}$-factorial terminalizations admitted by the symplectic quotient singularity in terms of the dimension of a certain Orlik–Solomon algebra naturally associated to the Calogero–Moser deformation. This dimension is explicitly calculated for all groups ${\rm\Gamma}$ for which it is known that $V/{\rm\Gamma}$ admits a symplectic resolution. As a consequence of our results, we confirm a conjecture of Ginzburg and Kaledin.
We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.
A companion basis for a quiver Γ mutation equivalent to a simply-laced Dynkin quiver is a subset of the associated root system which is a $\mathbb{Z}$-basis for the integral root lattice with the property that the non-zero inner products of pairs of its elements correspond to the edges in the underlying graph of Γ. It is known in type A (and conjectured for all simply-laced Dynkin cases) that any companion basis can be used to compute the dimension vectors of the finitely generated indecomposable modules over the associated cluster-tilted algebra. Here, we present a procedure for explicitly constructing a companion basis for any quiver of mutation type A or D.
The purpose of this paper is to provide new constructions of Hom-associative algebras using Hom-analogues of certain operators called twistors and pseudotwistors, by deforming a given Hom-associative multiplication into a new Hom-associative multiplication. As examples, we introduce Hom-analogues of the twisted tensor product and smash product. Furthermore, we show that the construction by the twisting principle introduced by Yau and the twisting of associative algebras using pseudotwistors admit a common generalization.
Consider a simple Lie algebra $\mathfrak{g}$ and $\overline{\mathfrak{g}}$ ⊂ $\mathfrak{g}$ a Levi subalgebra. Two irreducible $\overline{\mathfrak{g}}$-modules yield isomorphic inductions to $\mathfrak{g}$ when their highest weights coincide up to conjugation by an element of the Weyl group W of $\mathfrak{g}$ which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$. In this paper, we study the converse problem: given two irreducible $\overline{\mathfrak{g}}$-modules of highest weight μ and ν whose inductions to $\mathfrak{g}$ are isomorphic, can we conclude that μ and ν are conjugate under the action of an element of W which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$? We conjecture this is true in general. We prove this conjecture in type A and, for the other root systems, in various situations providing μ and ν satisfy additional hypotheses. Our result can be interpreted as an analogue for branching coefficients of the main result of Rajan [6] on tensor product multiplicities.
Symmetry groups of Lie algebras and superalgebras constructed from (∈, δ)-Freudenthal-Kantor triple systems have been studied. In particular, for a special (ε, ε)-Freudenthal–Kantor triple, it is the SL(2) group. Also, the relationship between two constructions of Lie algebras from structurable algebras has been investigated.
We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise.
From the mid-1990s onwards, the main focus of L. G. Kovács’ research was on Lie powers. This brief survey presents some of the key results on Lie powers obtained by Kovács and his collaborators, and discusses some subsequent developments and applications of this work.
We study the free Lie ring of rank $2$ in the variety of all centre-by-nilpotent-by-abelian Lie rings of derived length $3$. This is the quotient $L/([\unicode[STIX]{x1D6FE}_{c}(L^{\prime }),L]+L^{\prime \prime \prime })$ with $c\geqslant 2$ where $L$ is the free Lie ring of rank $2$, $\unicode[STIX]{x1D6FE}_{c}(L^{\prime })$ is the $c$th term of the lower central series of the derived ideal $L^{\prime }$ of $L$, and $L^{\prime \prime \prime }$ is the third term of the derived series of $L$. We show that the quotient $\unicode[STIX]{x1D6FE}_{c}(L^{\prime })+L^{\prime \prime \prime }/[\unicode[STIX]{x1D6FE}_{c}(L^{\prime }),L]+L^{\prime \prime \prime }$ is a direct sum of a free abelian group and a torsion group of exponent $c$. We exhibit an explicit generating set for the torsion subgroup.
We consider the problem of deforming simultaneously a pair of given structures. We show that such deformations are governed by an $L_{\infty }$-algebra, which we construct explicitly. Our machinery is based on Voronov’s derived bracket construction. In this paper we consider only geometric applications, including deformations of coisotropic submanifolds in Poisson manifolds, of twisted Poisson structures, and of complex structures within generalized complex geometry. These applications cannot be, to our knowledge, obtained by other methods such as operad theory.
In Bennett et al. [BGG reciprocity for current algebras, Adv. Math. 231 (2012), 276–305] it was conjectured that a BGG-type reciprocity holds for the category of graded representations with finite-dimensional graded components for the current algebra associated to a simple Lie algebra. We associate a current algebra to any indecomposable affine Lie algebra and show that, in this generality, the BGG reciprocity is true for the corresponding category of representations.
A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.
This work defines a new algebraic structure, to be called an alternative Clifford algebra associated to a given quadratic form. I explored its representations, particularly concentrating on connections to the well-understood octonion algebras. I finished by suggesting directions for future research.
Meta-centralizers of non-locally compact group algebras are studied. Theorems about their representations with the help of families of generalized measures are proved. Isomorphisms of group algebras are investigated in relation with meta-centralizers.
A basis ${\mathcal{B}}=\{u_{i}\}_{i\in I}$ of a commutative or anticommutative algebra $\mathfrak{C},$ over an arbitrary base field $\mathbb{F}$, is called multiplicative if for any $i,j\in I$ we have that $u_{i}u_{j}\in \mathbb{F}u_{k}$ for some $k\in I$. We show that if a commutative or anticommutative algebra $\mathfrak{C}$ admits a multiplicative basis then it decomposes as the direct sum $\mathfrak{C}=\bigoplus _{j}\mathfrak{i}_{j}$ of well-described ideals each one of which admits a multiplicative basis. Also the minimality of $\mathfrak{C}$ is characterised in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is indexed by the family of its minimal ideals admitting a multiplicative basis.
We prove that, for simple modules $M$ and $N$ over a quantum affine algebra, their tensor product $M\otimes N$ has a simple head and a simple socle if $M\otimes M$ is simple. A similar result is proved for the convolution product of simple modules over quiver Hecke algebras.