We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a conjecture of Pappas and Rapoport for all Shimura varieties of abelian type with parahoric level structure when $p>2$ by showing that the Kisin–Pappas–Zhou integral models of Shimura varieties of abelian type are canonical. In particular, this shows that these models are independent of the choices made during their construction, and that they satisfy functoriality with respect to morphisms of Shimura data.
We show that for all real biquadratic fields not containing $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{13}$, the Pythagoras number of the ring of algebraic integers is at least 6. We also provide an upper bound on the norm and the minimal (codifferent) trace of additively indecomposable integers in some families of these fields.
Let $K={\mathbb {Q}}(\sqrt {-7})$ and $\mathcal {O}$ the ring of integers in $K$. The prime $2$ splits in $K$, say $2{\mathcal {O}}={\mathfrak {p}}\cdot {\mathfrak {p}}^*$. Let $A$ be an elliptic curve defined over $K$ with complex multiplication by $\mathcal {O}$. Assume that $A$ has good ordinary reduction at both $\mathfrak {p}$ and ${\mathfrak {p}}^*$. Write $K_\infty$ for the field generated by the $2^\infty$–division points of $A$ over $K$ and let ${\mathcal {G}}={\mathrm {Gal}}(K_\infty /K)$. In this paper, by adopting a congruence formula of Yager and De Shalit, we construct the two-variable $2$-adic $L$-function on $\mathcal {G}$. Then by generalizing De Shalit’s local structure theorem to the two-variable setting, we prove a two-variable elliptic analogue of Iwasawa’s theorem on cyclotomic fields. As an application, we prove that every branch of the two-variable measure has Iwasawa $\mu$ invariant zero.
Let G be a finite nilpotent group and $n\in \{3,4, 5\}$. Consider $S_n\times G$ as a subgroup of $S_n\times S_{|G|}\subset S_{n|G|}$, where G embeds into the second factor of $S_n\times S_{|G|}$ via the regular representation. Over any number field k, we prove the strong form of Malle’s conjecture (cf. Malle (2002, Journal of Number Theory 92, 315–329)) for $S_n\times G$ viewed as a subgroup of $S_{n|G|}$. Our result requires that G satisfies some mild conditions.
Let $E/\mathbb {Q}$ be an elliptic curve and let p be a prime of good supersingular reduction. Attached to E are pairs of Iwasawa invariants $\mu _p^\pm $ and $\lambda _p^\pm $ which encode arithmetic properties of E along the cyclotomic $\mathbb {Z}_p$-extension of $\mathbb {Q}$. A well-known conjecture of B. Perrin-Riou and R. Pollack asserts that $\mu _p^\pm =0$. We provide support for this conjecture by proving that for any $\ell \geq 0$, we have $\mu _p^\pm \leq 1$ for all but finitely many primes p with $\lambda _p^\pm =\ell $. Assuming a recent conjecture of D. Kundu and A. Ray, our result implies that $\mu _p^\pm \leq 1$ holds on a density 1 set of good supersingular primes for E.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
We compute primes $p \equiv 5 \bmod 8$ up to $10^{11}$ for which the Pellian equation $x^2-py^2=-4$ has no solutions in odd integers; these are the members of sequence A130229 in the Online Encyclopedia of Integer Sequences. We find that the number of such primes $p\leqslant x$ is well approximated by
Let (K, v) be a valued field and $\phi\in K[x]$ be any key polynomial for a residue-transcendental extension w of v to K(x). In this article, using the ϕ-Newton polygon of a polynomial $f\in K[x]$ (with respect to w), we give a lower bound for the degree of an irreducible factor of f. This generalizes the result given in Jakhar and Srinivas (On the irreducible factors of a polynomial II, J. Algebra556 (2020), 649–655).
Let p be a fixed prime number, and let F be a global function field with characteristic not equal to p. In this article, we shall study the variation properties of the Sylow p-subgroups of the even K-groups in a p-adic Lie extension of F. When the p-adic Lie extension is assumed to contain the cyclotomic $\mathbb {Z}_p$-extension of F, we obtain growth estimate of these groups. We also establish a duality between the direct limit and inverse limit of the even K-groups.
We show that for any $\varepsilon>0$, the number of monic, reciprocal, length-$5$ integer polynomials that have house at least $1+\varepsilon $ is finite. The proof is algorithmic, and we are consequently able to compute a complete list (not imposing any bound on the degree) of small Mahler measures of length-$5$ polynomials that have house at least $1.01$.
For larger lengths, the analogous finiteness statement is false, as we show by examples. For length $6$ we show that if one also imposes an upper bound for the Mahler measure that is strictly below the smallest Pisot number $\theta = 1.32471\cdots $, and if the length $6$ polynomial is a cyclotomic multiple of an irreducible polynomial, then the number of polynomials with house at least $1+\varepsilon $ is finite.
We pursue these ideas to search opportunistically for small Mahler measures represented by longer polynomials. We find one new small measure.
We give an algorithm that finds all Salem numbers in an interval $[a,b]$ that are the Mahler measure of an integer polynomial of length at most $6$, provided $1<a \le b < \theta $.
We consider the relationship between the Mahler measure $M(f)$ of a polynomial f and its separation $\operatorname {sep}(f)$. Mahler [‘An inequality for the discriminant of a polynomial’, Michigan Math. J.11 (1964), 257–262] proved that if $f(x) \in \mathbb {Z}[x]$ is separable of degree n, then $\operatorname {sep}(f) \gg _n M(f)^{-(n-1)}$. This spurred further investigations into the implicit constant involved in that relationship and led to questions about the optimal exponent on $M(f)$. However, there has been relatively little study concerning upper bounds on $\operatorname {sep}(f)$ in terms of $M(f)$. We prove that if $f(x) \in \mathbb {C}[x]$ has degree n, then $\operatorname {sep}(f) \ll n^{-1/2}M(f)^{1/(n-1)}$. Moreover, this bound is sharp up to the implied constant factor. We further investigate the constant factor under various additional assumptions on $f(x)$; for example, if it has only real roots.
In this article, we obtain a necessary and sufficient condition for the pseudo-nullity of the p-ramified Iwasawa module for p-adic Lie extensions of totally real fields. It is applied to answer the corresponding question for the minus component of the unramified Iwasawa module for CM-fields. The results show that the pseudo-nullity is very rare.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
We investigate the relationship between lower bounds for the Mahler measure and splitting of primes, and prove various lower bounds for the Mahler measure of algebraic integers in terms of the least common multiples of all inertia degrees of primes. The results generalise work of the second author and Kumar [‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar.169(2) (2023), 349–358].
For a prime p and a rational elliptic curve $E_{/\mathbb {Q}}$, set $K=\mathbb {Q}(E[p])$ to denote the torsion field generated by $E[p]:=\operatorname {ker}\{E\xrightarrow {p} E\}$. The class group $\operatorname {Cl}_K$ is a module over $\operatorname {Gal}(K/\mathbb {Q})$. Given a fixed odd prime number p, we study the average nonvanishing of certain Galois stable quotients of the mod-p class group $\operatorname {Cl}_K/p\operatorname {Cl}_K$. Here, E varies over all rational elliptic curves, ordered according to height. Our results are conditional, since we assume that the p-primary part of the Tate–Shafarevich group is finite. Furthermore, we assume predictions made by Delaunay for the statistical variation of the p-primary parts of Tate–Shafarevich groups. We also prove results in the case when the elliptic curve $E_{/\mathbb {Q}}$ is fixed and the prime p is allowed to vary.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
Let $\mathcal {O}$ be a maximal order in the quaternion algebra over $\mathbb Q$ ramified at p and $\infty $. We prove two theorems that allow us to recover the structure of $\mathcal {O}$ from limited information. The first says that for any infinite set S of integers coprime to p, $\mathcal {O}$ is spanned as a ${\mathbb {Z}}$-module by elements with norm in S. The second says that $\mathcal {O}$ is determined up to isomorphism by its theta function.
Using the special value at $u=1$ of Artin–Ihara L-functions, we associate to every $\mathbb {Z}$-cover of a finite connected graph a polynomial, which we call the Ihara polynomial. We show that the number of spanning trees for the finite intermediate graphs of such a cover can be expressed in terms of the Pierce–Lehmer sequence associated to a factor of the Ihara polynomial. This allows us to express the asymptotic growth of the number of spanning trees in terms of the Mahler measure of this polynomial. Specialising to the situation where the base graph is a bouquet or the dumbbell graph gives us back previous results in the literature for circulant and I-graphs (including the generalised Petersen graphs). We also express the p-adic valuation of the number of spanning trees of the finite intermediate graphs in terms of the p-adic Mahler measure of the Ihara polynomial. When applied to a particular $\mathbb {Z}$-cover, our result gives us back Lengyel’s calculation of the p-adic valuations of Fibonacci numbers.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
Let $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than $1/2$ of $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith.99(1) (2000), 61–65].