To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we investigate the analogue of the classical badly approximable setup in which the distance to the nearest integer ‖⋅‖ is replaced by the sup norm |⋅|. In the case of one linear form we prove that the hybrid badly approximable set is of full Hausdorff dimension.
We introduce a ‘limiting Frobenius structure’ attached to any degeneration of projective varieties over a finite field of characteristic p which satisfies a p-adic lifting assumption. Our limiting Frobenius structure is shown to be effectively computable in an appropriate sense for a degeneration of projective hypersurfaces. We conjecture that the limiting Frobenius structure relates to the rigid cohomology of a semistable limit of the degeneration through an analogue of the Clemens–Schmidt exact sequence. Our construction is illustrated, and conjecture supported, by a selection of explicit examples.
We give a short and “soft” proof of the asymptotic orthogonality of Fourier coefficients of Poincaré series for classical modular forms as well as for Siegel cusp forms, in a qualitative form.
A Diophantinem-tuple is a set A of m positive integers such that ab+1 is a perfect square for every pair a,b of distinct elements of A. We derive an asymptotic formula for the number of Diophantine quadruples whose elements are bounded by x. In doing so, we extend two existing tools in ways that might be of independent interest. The Erdős–Turán inequality bounds the discrepancy between the number of elements of a sequence that lie in a particular interval modulo 1 and the expected number; we establish a version of this inequality where the interval is allowed to vary. We also adapt an argument of Hooley on the equidistribution of solutions of polynomial congruences to handle reducible quadratic polynomials.
Let P=A×A⊂𝔽p×𝔽p, p a prime. Assume that P=A×A has n elements, n<p. See P as a set of points in the plane over 𝔽p. We show that the pairs of points in P determine lines, where c is an absolute constant. We derive from this an incidence theorem: the number of incidences between a set of n points and a set of n lines in the projective plane over 𝔽p (n<p)is bounded by , where C is an absolute constant.
Let K be a finite unramified extension of Qp. We parametrize the (φ,Γ)-modules corresponding to reducible two-dimensional -representations of GK and characterize those which have reducible crystalline lifts with certain Hodge–Tate weights.
For any irreducible quadratic polynomial f(x) in ℤ[x], we obtain the estimate log l.c.m.(f(1),…,f(n))=nlog n+Bn+o(n), where B is a constant depending on f.
We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.
We study the Witten multiple zeta function associated with the Lie algebra . Our main result shows that its special values at nonnegative integers are always expressible by alternating Euler sums. More precisely, every such special value of weight w at least 2 is a finite ℚ-linear combination of alternating Euler sums of weight w and depth at most 2, except when the only nonzero argument is one of the two last variables, in which case ζ(w−1) is needed.
Recursive formulae satisfied by the Fourier coefficients of meromorphic modular forms on groups of genus zero have been investigated by several authors. Bruinier et al. [‘The arithmetic of the values of modular functions and the divisors of modular forms’, Compositio Math. 140(3) (2004), 552–566] found recurrences for SL(2,ℤ); Ahlgren [‘The theta-operator and the divisors of modular forms on genus zero subgroups’, Math. Res. Lett.10(5–6) (2003), 787–798] investigated the groups Γ0(p); Atkinson [‘Divisors of modular forms on Γ0(4)’, J. Number Theory112(1) (2005), 189–204] considered Γ0(4), and S. Y. Choi [‘The values of modular functions and modular forms’, Canad. Math. Bull.49(4) (2006), 526–535] found the corresponding formulae for the groups Γ+0(p). In this paper we generalize these results and find recursive formulae for the Fourier coefficients of any meromorphic modular form f on any genus-zero group Γ commensurable with SL(2,ℤ) , including noncongruence groups and expansions at irregular cusps. The form of the recurrence relations is well suited for the computation of the Fourier coefficients of the functions and forms on the groups which occur in monstrous and generalized moonshine. The required initial data has, in many cases, been computed by Norton (private communication).
In this paper, we study how close the terms of a finite arithmetic progression can get to a perfect square. The answer depends on the initial term, the common difference and the number of terms in the arithmetic progression.
Among the values of a binary quadratic form, there are many twins of fixed distance. This is shown in quantitative form. For quadratic forms of discriminant −4 or 8 a corresponding result is obtained for triplets.
Cassels has described a pairing on the 2-Selmer group of an elliptic curve which shares some properties with the Cassels–Tate pairing. In this article, we prove that the two pairings are the same.
A Lehmer number is a composite positive integer n such that ϕ(n)|n − 1. In this paper, we show that given a positive integer g > 1 there are at most finitely many Lehmer numbers which are repunits in base g and they are all effectively computable. Our method is effective and we illustrate it by showing that there is no such Lehmer number when g ∈ [2, 1000].
We study the elliptic curve discrete logarithm problem over finite extension fields. We show that for any sequences of prime powers (qi)i∈ℕ and natural numbers (ni)i∈ℕ with ni⟶∞ and ni/log (qi)⟶0 for i⟶∞, the elliptic curve discrete logarithm problem restricted to curves over the fields 𝔽qnii can be solved in subexponential expected time (qnii)o(1). We also show that there exists a sequence of prime powers (qi)i∈ℕ such that the problem restricted to curves over 𝔽qi can be solved in an expected time of e𝒪(log (qi)2/3).
In Gun and Ramakrishnan [‘On special values of certain Dirichlet L-functions’, Ramanujan J.15 (2008), 275–280], we gave expressions for the special values of certain Dirichlet L-function in terms of finite sums involving Jacobi symbols. In this note we extend our earlier results by giving similar expressions for two more special values of Dirichlet L-functions, namely L(−1,χm) and L(−2,χ−m′), where m,m′ are square-free integers with m≡1 mod 8 and m′≡3 mod 8 and χD is the Kronecker symbol . As a consequence, using the identities of Cohen [‘Sums involving the values at negative integers of L-functions of quadratic characters’, Math. Ann.217 (1975), 271–285], we also express the finite sums with Jacobi symbols in terms of sums involving divisor functions. Finally, we observe that the proof of Theorem 1.2 in Gun and Ramakrishnan (as above) is a direct consequence of Equation (24) in Gun, Manickam and Ramakrishnan [‘A canonical subspace of modular forms of half-integral weight’, Math. Ann.347 (2010), 899–916].
Erdős and Szekeres [‘Some number theoretic problems on binomial coefficients’, Aust. Math. Soc. Gaz.5 (1978), 97–99] showed that for any four positive integers satisfying m1+m2=n1+n2, the two binomial coefficients (m1+m2)!/m1!m2! and (n1+n2)!/n1!n2! have a common divisor greater than 1. The analogous statement for k-element families of k-nomial coefficients (k>1) was conjectured in 1997 by David Wasserman.
Erdős and Szekeres remark that if m1,m2,n1,n2 as above are all greater than 1, there is probably a lower bound on the common divisor in question which goes to infinity as a function of m1 +m2 .Such a bound is obtained in Section 2.
The remainder of this paper is devoted to proving results that narrow the class of possible counterexamples to Wasserman’s conjecture.
Borel conjectured that all algebraic irrational numbers are normal in base 2. However, very little is known about this problem. We improve the lower bounds for the number of digit changes in the binary expansions of algebraic irrational numbers.
We prove that, under suitable conditions, a Jacobi Poincaré series of exponential type of integer weight and matrix index does not vanish identically. For the classical Jacobi forms, we construct a basis consisting of the ‘first’ few Poincaré series, and also give conditions, both dependent on and independent of the weight, that ensure the nonvanishing of a classical Jacobi Poincaré series. We also obtain a result on the nonvanishing of a Jacobi Poincaré series when an odd prime divides the index.