To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extending classical results of Nair and Tenenbaum, we provide general, sharp upper bounds for sums of the type where x,y,u,v have comparable logarithms, F belongs to a class defined by a weak form of sub-multiplicativity, and the Qj are arbitrary binary forms. A specific feature of the results is that the bounds are uniform within the F-class and that, as in a recent version given by Henriot, the dependency with respect to the coefficients of the Qj is made explicit. These estimates play a crucial rôle in the proof, published separately by the authors, of Manin’s conjecture for Châtelet surfaces.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
For V a two-dimensional p-adic representation of Gℚp, we denote by B(V ) the admissible unitary representation of GL2(ℚp) attached to V under the p-adic local Langlands correspondence of GL2(ℚp) initiated by Breuil. In this paper, building on the works of Berger–Breuil and Colmez, we determine the locally analytic vectors B(V )an of B (V )when V is irreducible, crystabelian and Frobenius semisimple with distinct Hodge–Tate weights; this proves a conjecture of Breuil. Using this result, we verify Emerton’s conjecture that dim Ref η⊗ψ (V )=dim Exp η∣⋅∣⊗xψ (B (V )an ⊗(x∣⋅∣∘det ))for those V which are irreducible, crystabelian and Frobenius semisimple.
We construct linear maps from the spaces of quasimodular forms for a discrete subgroup Γ of SL(2,ℝ) to some cohomology spaces of the group Γ and prove that these maps are equivariant with respect to appropriate Hecke operator actions. The results are obtained by using the fact that there is a correspondence between quasimodular forms and certain finite sequences of modular forms.
Let k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors of length two over k. We construct a group stack Ĝ over k, the metaplectic extension of the Greenberg realization of . We also construct a geometric analogue of the Weil representation of Ĝ, this is a triangulated category on which Ĝ acts by functors. This triangulated category and the action are geometric in a suitable sense.
Let R be a complete rank-1 valuation ring of mixed characteristic (0, p), and let K be its field of fractions. A g-dimensional truncated Barsotti–Tate group G of level n over R is said to have a level-n canonical subgroup if there is a K-subgroup of G ⊗RK with geometric structure (Z/pnZ)g consisting of points ‘closest to zero’. We give a non-trivial condition on the Hasse invariant of G that guarantees the existence of the canonical subgroup, analogous to a result of Katz and Lubin for elliptic curves. The bound is independent of the height and dimension of G.
We prove that the sequence {log ζ(n)}n≥2 is not holonomic, that is, does not satisfy a finite recurrence relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli numbers.
We prove that the Newton polygons of Frobenius on the crystalline cohomology of proper smooth varieties satisfy a symmetry that results, in the case of projective smooth varieties, from Poincaré duality and the hard Lefschetz theorem. As a corollary, we deduce that the Betti numbers in odd degrees of any proper smooth variety over a field are even (a consequence of Hodge symmetry in characteristic zero), answering an old question of Serre. Then we give a generalization and a refinement for arbitrary varieties over finite fields, in response to later questions of Serre and of Katz.
In this paper, we consider certain double series analogous to Tornheim’s double series and real analytic Eisenstein series. By computing double integrals in two ways, we express the double series as a sum of products of polylogarithms. The technique generalises one given by Kanemitsu, Tanigawa and Yoshimoto. Evaluating the double series at particular points gives new evaluations for certain double series in terms of values of the Riemann zeta function and the dilogarithm which are analogues of formulas of Mordell and Goncharov.
We prove the conjecture formulated in Litvak and Ejov (2009), namely, that the trace of the fundamental matrix of a singularly perturbed Markov chain that corresponds to a stochastic policy feasible for a given graph is minimised at policies corresponding to Hamiltonian cycles.
Let K be a complete discrete valuation field of mixed characteristic (0,p), with possibly imperfect residue field. We prove a Hasse–Arf theorem for the arithmetic ramification filtrations on GK, except possibly in the absolutely unramified and non-logarithmic case, or the p=2 and logarithmic case. As an application, we obtain a Hasse–Arf theorem for filtrations on finite flat group schemes over 𝒪K.
Using a recent result on the sum–product problem, we estimate the number of elements γ in a prime finite field such that both γ and γ+γ−1 are of small order.
For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of ℚ-rank r, we construct a compact manifold by gluing together 2r copies of the Borel–Serre compactification of X. We apply the classical Lefschetz fixed point formula to and get formulas for the traces of Hecke operators ℋ acting on the cohomology of X. We allow twistings of ℋ by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G,η) . As an application, we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups.
For a primitive root g modulo a prime p≥1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn, n=1,…,N, which is uniform over all integers a with gcd (a,p)=1.
We describe an algorithm to prove the Birch and Swinnerton-Dyer conjectural formula for any given elliptic curve defined over the rational numbers of analytic rank zero or one. With computer assistance we rigorously prove the formula for 16714 of the 16725 such curves of conductor less than 5000.
Let , where η(τ) is the Dedekind eta function. We show that if τ0 is an imaginary quadratic argument and m is an odd integer, then is an algebraic integer dividing This is a generalization of a result of Berndt, Chan and Zhang. On the other hand, when K is an imaginary quadratic field and θK is an element of K with Im(θK) > 0 which generates the ring of integers of K over ℤ, we find a sufficient condition on m which ensures that is a unit.
Let G be a subgroup of the symmetric group Sn, and let δG=∣Sn/G∣−1 where ∣Sn/G∣ is the index of G in Sn. Then there are at most On,ϵ(Hn−1+δG+ϵ) monic integer polynomials of degree n that have Galois group G and height not exceeding H, so there are only a “few” polynomials having a “small” Galois group.
In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3. Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
In this work, we study the intersection cohomology of Siegel modular varieties. The goal is to express the trace of a Hecke operator composed with a power of the Frobenius endomorphism (at a good place) on this cohomology in terms of the geometric side of Arthur’s invariant trace formula for well-chosen test functions. Our main tools are the results of Kottwitz about the contribution of the cohomology with compact support and about the stabilization of the trace formula, Arthur’s L2 trace formula and the fixed point formula of Morel [Complexes pondérés sur les compactifications de Baily–Borel. Le cas des variétés de Siegel, J. Amer. Math. Soc. 21 (2008), 23–61]. We ‘stabilize’ this last formula, i.e. express it as a sum of stable distributions on the general symplectic groups and its endoscopic groups, and obtain the formula conjectured by Kottwitz in [Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties and L-functions, Part I, Perspectives in Mathematics, vol. 10 (Academic Press, San Diego, CA, 1990), 161–209]. Applications of the results of this article have already been given by Kottwitz, assuming Arthur’s conjectures. Here, we give weaker unconditional applications in the cases of the groups GSp4 and GSp6.