To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the distribution of the size of Selmer groups and Tate–Shafarevich groups arising from a 2-isogeny and its dual 2-isogeny for elliptic curves En:y2=x3−n3. We show that the 2-ranks of these groups all follow the same distribution. The result also implies that the mean value of the 2-rank of the corresponding Tate–Shafarevich groups for square-free positive integers n≤X is as X→∞. This is quite different from quadratic twists of elliptic curves with full 2-torsion points over ℚ [M. Xiong and A. Zaharescu, Distribution of Selmer groups of quadratic twists of a family of elliptic curves. Adv. Math.219 (2008), 523–553], where one Tate–Shafarevich group is almost always trivial while the other is much larger.
Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k{(n+i)2+1}.
We prove new automorphy lifting theorems for essentially conjugate self-dual Galois representations into GLn. Existing theorems require that the residual representation have ‘big’ image, in a certain technical sense. Our theorems are based on a strengthening of the Taylor–Wiles method which allows one to weaken this hypothesis.
We prove the following theorems. Theorem 1: for any E-field with cyclic kernel, in particular ℂ or the Zilber fields, all real abelian algebraic numbers are pointwise definable. Theorem 2: for the Zilber fields, the only pointwise definable algebraic numbers are the real abelian numbers.
Let K be a number field. For f∈K[x], we give an upper bound on the least positive integer T=T(f) such that no quotient of two distinct Tth powers of roots of f is a root of unity. For each ε>0 and each f∈ℚ[x] of degree d≥d(ε) we prove that . In the opposite direction, we show that the constant 2cannot be replaced by a number smaller than 1 . These estimates are useful in the study of degenerate and nondegenerate linear recurrence sequences over a number field K.
Brizolis asked for which primes p greater than 3 there exists a pair (g,h) such that h is a fixed point of the discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base g. Various authors have contributed to the understanding of this problem. In this paper, we use p-adic methods, primarily Hensel’s lemma and p-adic interpolation, to count fixed points, two-cycles, collisions, and solutions to related equations modulo powers of a prime p.
Let p and r be two primes, and letn and m be two distinct divisors ofpr. Consider Φn and Φm, the nth and mth cyclotomicpolynomials. In this paper, we present lower and upper bounds for thecoefficients of the inverse of Φn modulo Φm and discuss an application to torus-based cryptography.
Let r be an integer greater than 1, and let A be a finite, nonempty set of nonzero integers. We obtain a lower bound for the number of positive squarefree integers n, up to x, for which the products ∏ p∣n(p+a) (over primes p) are perfect rth powers for all the integers a in A. Also, in the cases where A={−1} and A={+1}, we will obtain a lower bound for the number of such n with exactly r distinct prime factors.
In 1903 Mirimanoff conjectured that Cauchy–Mirimanoff polynomials En are irreducible over ℚ for odd prime n. Polynomials Rn, Sn, Tn are introduced, closely related to En. It is proved that Rm, Sm, Tm are irreducible over ℚ for odd m≥3 , and En, Rn, Sn are irreducible over ℚ, for n=2qm, q=1,2,3,4,5 , and m≥1odd.
The existence of products of three pairwise coprime integers is investigated in short intervals of the form . A general theorem is proved which shows that such integer products exist provided there is a bound on the product of any two of them. A particular case of relevance to elliptic curve cryptography, where all three integers are of order , is presented as a corollary to this result.
Denote the nth convergent of the continued fraction α=[a0;a1,a2,…] by pn/qn=[a0;a1,…,an]. In this paper we give exact formulae for the quantities Dn:=qnα−pn in several typical types of Tasoev continued fractions. A simple example of the type of Tasoev continued fraction considered is α=[0;ua,ua2,ua3,…].
Let 𝕂⊂ℂ be a number field. We show how to compute 𝕂-irrationality measures of a number ξ∉𝕂, and 𝕂-nonquadraticity measures of ξ if [𝕂(ξ):𝕂]>2. By applying the saddle point method to a family of double complex integrals, we prove ℚ(α)-irrationality measures and ℚ(α)-nonquadraticity measures of log α for several algebraic numbers α∈ℂ, improving earlier results due to Amoroso and the second-named author.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0in K[x]and the integer m≥2is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x)with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
Let T be an algebraic torus over ℚ such that T(ℝ) is compact. Assuming the generalized Riemann hypothesis, we give a lower bound for the size of the class group of T modulo its n-torsion in terms of a small power of the discriminant of the splitting field of T. As a corollary, we obtain an upper bound on the n-torsion in that class group. This generalizes known results on the structure of class groups of complex multiplication fields.
We develop Weyl differencing and Hua-type lemmata for a class of multidimensional exponential sums. We then apply our estimates to bound the number of variables required to establish an asymptotic formula for the number of solutions of a system of diophantine equations arising from the study of linear spaces on hypersurfaces. For small values of the degree and dimension, our results are superior to those stemming from the author’s earlier work on Vinogradov’s mean value theorem.
In this paper, we consider the simultaneous representation of pairs of positive integers. We show that every pair of large positive even integers can be represented in the form of a pair of linear equations in four prime variables and k powers of two. Here, k=63 in general and k=31 under the generalised Riemann hypothesis.
We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w*2.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).