To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by a statement of W. Luh asserting the existence of entire functions having together with all their derivatives and antiderivatives some kind of additive universality or multiplicative universality on certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we introduce in this paper the new concept of U-operators, which are defined on the space of entire functions. Concrete examples, including differential and antidifferential operators, composition, multiplication and shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal entire functions with gap power series is also strengthened.
The eigentime identity is proved for continuous-time reversible Markov chains with Markov generator L. When the essential spectrum is empty, let {0 = λ0 < λ1 ≤ λ2 ≤ ···} be the whole spectrum of L in L2. Then ∑n≥1 λn-1 < ∞ implies the existence of the spectral gap α of L in L∞. Explicit formulae are presented in the case of birth–death processes and from these formulae it is proved that ∑n≥1 λn-1 < ∞ if and only if α > 0.
In this paper we continue to modify and expand a technique due to Enflo for producing nontrivial hyperinvariant subspaces for quasinilpotent operators, and thereby obtain such subspaces for some additional quasinilpotent operators on Hilbert space. We also obtain a structure theorem for a certain class of operators.
We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.
We develop a theory of ergodicity for unbounded functions ø: J → X, where J is a subsemigroup of a locally compact abelian group G and X is a Banach space. It is assumed that ø is continuous and dominated by a weight w defined on G. In particular, we establish total ergodicity for the orbits of an (unbounded) strongly continuous representation T: G → L(X) whose dual representation has no unitary point spectrum. Under additional conditions stability of the orbits follows. To study spectra of functions, we use Beurling algebras L1w(G) and obtain new characterizations of their maximal primary ideals, when w is non-quasianalytic, and of their minimal primary ideals, when w has polynomial growth. It follows that, relative to certain translation invariant function classes , the reduced Beurling spectrum of ø is empty if and only if ø ∈ . For the zero class, this is Wiener's tauberian theorem.
We consider random dynamical systems with randomly chosen jumps on infinite-dimensional spaces. The choice of deterministic dynamical systems and jumps depends on a position. The system generalizes dynamical systems corresponding to learning systems, Poisson driven stochastic differential equations, iterated function system with infinite family of transformations and random evolutions. We will show that distributions which describe the dynamics of this system converge to an invariant distribution. We use recent results concerning asymptotic stability of Markov operators on infinite-dimensional spaces obtained by T. Szarek.
The purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closed densely defined linear operators subjected to additive perturbations not necessarily belonging to any ideal of the algebra of bounded linear operators. If A denotes a closed densely defined linear operator on a Banach space X, our approach consists principally in considering the class of A-closable operators which, regarded as operators in ℒ(XA, X) (where XA denotes the domain of A equipped with the graph norm), are contained in the set of A-Fredholm perturbations (see Definition 1.2). Our results are used to describe the essential spectra of singular neutron transport equations in bounded geometries.
In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer system varies with respect to the state of an underlying continuous-time Markov chain. We present a novel algorithmic approach to solve numerically for the steady-state solution of such queues. Using this approach, both infinite- and finite-buffer cases are studied. We show that the solution of the infinite-buffer case is reduced to the solution of a generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix pencil. Moreover, this SDC problem does not require the individual computation of any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-exponential representation for the steady-state queue-length distribution is obtained. The finite-buffer case, on the other hand, requires a similar but different decomposition, the so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-exponential representation for the steady-state queue-length distribution. The proposed approach for the finite-buffer case is shown not to have the numerical stability problems reported in the literature.
For any bounded linear operator A in a Banach space, two generalized condition numbers, k(A) and k(A) are defined in this paper. These condition numbers may be applied to the perturbation analysis for the solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional Banach spaces. Different expressions for the two generalized condition numbers are discussed in this paper and applied to the perturbation analysis of the operator equation.
Let T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.
In this paper, we prove that two homogeneous quasi-invariant subspaces are similar only if they are equal. Moreover, we exhibit an example to show how to determine the similarity orbits of quasi-invariant subspaces.
Given two m-tuples of commuting spectral operators on a Hilbert space, T = (T1,…, Tm) and S = (S1,…, Sm), an extended version of Henrici perturbation theorem is obtained for the joint approximate spectrum of S under perturbation by T. We also derive an extended version of Bauer-Fike theorem for such tuples of operators. The method used involves Clifford algebra techniques introduced by McIntosh and Pryde.
The connection between Clifford analysis and the Weyl functional calculus for a d-tuple of bounded selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited in which the support has gaps.
Let X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H∞ functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H∞ functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H∞ functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).
Additive perturbation results for the generalized Drazin inverse of Banach space operators are presented. Precisely, if Ad denotes the generalized Drazin inverse of a bounded linear operator A on an arbitrary complex Banach space, then in some special cases (A + B)d is computed in terms of Ad and Bd. Thus, recent results of Hartwig, Wang and Wei (Linear Algebra Appl. 322 (2001), 207–217) are extended to infinite dimensional settings with simplified proofs.
We study the perturbation of the generalized Drazin inverse for the elements of Banach algebras and bounded linear operators on Banach space. This work, among other things, extends the results obtained by the second author and Guorong Wang on the Drazin inverse for matrices.
This paper gives a complete classification of essentially commutative C*-algebras whose essential spectrum is homeomorphic to S2n−1 by their characteristic numbers. Let 1, 2 be such two C*-algebras; then they are C*-isomorphic if and only if they have the same n-th characteristic number. Furthermore, let γn() = m then is C*-isomorphic to C*(Mzl, …, Mzn) if m = 0, is C*-isomorphic C*(Tz1, …, Tzn−1, Tznm) if m ≠ 0. Some examples are given to show applications of the classfication theorem. We finally remark that the proof of the theorem depends on a construction of a complete system of representatives of Ext(S2n−1).
Using the comparsion results for positive compact operators by Aliprantis and Burkinshow, Mokhtar Kharroubi investigated cimpactness properties of positive semigroups on Banach latttices. The aim of this paper is to study these properties in general Banach spaces (without positivity). Our results generalize a part fo those obtained by Mokhtar-Kharroubi to general Banach spaces context. More specifically, we derive conditions which ensure the compactness of the remainder term Rn(t) for some inteter n. The improvement here is that it can applied directly to the neutron transport equation for a wide class of collision operators.
Let A and B be (not necessarily bounded) linear operators on a Banach lattice E such that |(s – B)-1x|≤ (s – A)-1|x| for all x in E and sufficiently large s ∈ R. The main purpose of this paper is to investigate the relation between the spectra σ(B) and σ(A) of B and A, respectively. We apply our results to study asymptotic properties of dominated C0-semigroups.
We consider a singularly perturbed (finite state) Markov chain and provide a complete characterization of the fundamental matrix. In particular, we obtain a formula for the regular part simpler than a previous formula obtained by Schweitzer, and the singular part is obtained via a reduction process similar to Delebecque's reduction for the stationary distribution. In contrast to previous approaches, one works with aggregate Markov chains of much smaller dimension than the original chain, an essential feature for practical computation. An application to mean first-passage times is also presented.