We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider an iterated form of Lavrentiev regularization, using a null sequence (αk) of positive real numbers to obtain a stable approximate solution for ill-posed nonlinear equations of the form F(x)=y, where F:D(F)⊆X→X is a nonlinear operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative regularization and generalized discrepancy principle for monotone operator equations”, Numer. Funct. Anal. Optim.28 (2007) 13–25] considered an a posteriori strategy to find a stopping index kδ corresponding to inexact data yδ with resulting in the convergence of the method as δ→0. However, they provided no error estimates. We consider an alternate strategy to find a stopping index which not only leads to the convergence of the method, but also provides an order optimal error estimate under a general source condition. Moreover, the condition that we impose on (αk) is weaker than that considered by Bakushinsky and Smirnova.
Let K be any compact set. The C*-algebra C(K) is nuclear and any bounded homomorphism from C(K) into B(H), the algebra of all bounded operators on some Hilbert space H, is automatically completely bounded. We prove extensions of these results to the Banach space setting, using the key concept ofR-boundedness. Then we apply these results to operators with a uniformly bounded H∞-calculus, as well as to unconditionality on Lp. We show that any unconditional basis on Lp ‘is’ an unconditional basis on L2 after an appropriate change of density.
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements ${{H}_{0}}$ and $H$ in the algebra and relate it to the concept of the de la Harpe–Skandalis homotopy invariant determinant associated with piecewise ${{C}^{1}}$-paths of operators joining ${{H}_{0}}$ and $H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman–Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier–Fuglede–Kadison differentiation formula.
We present the explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues for linear neutral functional differential equations $\left( \text{NFDE} \right)$ in ${{L}^{p}}$ spaces by using integrated semigroup theory. The analysis is based on the main result established elsewhere by the authors and results by Magal and Ruan on non-densely defined Cauchy problem. We formulate the $\text{NFDE}$ as a non-densely defined Cauchy problem and obtain some spectral properties from which we then derive explicit formulas for the projectors on the generalized eigenspaces associated with some eigenvalues. Such explicit formulas are important in studying bifurcations in some semi-linear problems.
We study the rate of growth of entire functions that are frequently hypercyclic for the differentiation operator or the translation operator. Moreover, we prove the existence of frequently hypercyclic harmonic functions for the translation operator and we study the rate of growth of harmonic functions that are frequently hypercyclic for partial differentiation operators.
We investigate an inverse spectral problem for the singular rank-one perturbations of a Hill operator. We give a necessary and sufficient condition for a real sequence to be the spectrum of a singular rank-one perturbation of the Hill operator.
Using some techniques of perturbation theory for Banach space complexes, we obtain necessary and sufficient conditions for the stability of the topological index of an open linear relation under small (with respect to the gap topology) perturbations with linear relations.
An operator A on a complex, separable, infinite-dimensional Hilbert space H is hypercyclic if there is a vector x∈H such that the orbit {x,Ax,A2x,…} is dense in H. Using the character of the analytic core and quasinilpotent part of an operator A, we explore the hypercyclicity for upper triangular operator matrix
Let 𝒳 be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, two weighted estimates related to weights are established for singular integral operators with nonsmooth kernels via a new sharp maximal operator associated with a generalized approximation to the identity. As applications, the weighted Lp(𝒳) and weighted endpoint estimates with general weights are obtained for singular integral operators with nonsmooth kernels, their commutators with BMO (𝒳) functions, and associated maximal operators. Some applications to holomorphic functional calculi of elliptic operators and Schrödinger operators are also presented.
Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy space H2 on the bidisc. We assume that . Using the wandering subspace of M and N, we study the relations between M and N. Moreover we study M and N using several natural operators defined by shift operators on H2.
We discuss ℓp-maximal regularityof power-bounded operators andrelate the discrete to the continuous time problem for analytic semigroups. We give a complete characterization of operators with ℓ1 and -maximal regularity. We also introduce an unconditional form of Ritt’s condition for power-bounded operators, which plays the role of the existence of an -calculus, and give a complete characterization of this condition in the case of Banach spaces which are L1-spaces, C(K)-spaces or Hilbert spaces.
We give a simplified proof of the complex inversion formula for semigroups and, more generally, solution families for scalar-type Volterra equations, including the stronger versions on unconditional martingale differences (UMD) spaces. Our approach is based on (elementary) Fourier analysis.
In this article we consider Re-nnd solutions of the equation AXB=C with respect to X, where A,B,C are given matrices. We give necessary and sufficient conditions for the existence of Re-nnd solutions and present a general form of such solutions. As a special case when A=I we obtain the results from a paper of Groß (‘Explicit solutions to the matrix inverse problem AX=B’, Linear Algebra Appl.289 (1999), 131–134).
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
The paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29 (1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.
We show that generalized Gaussian estimates for selfadjoint semigroups (e-tA)t ∈ R+ on L2 imply Lp boundedness of Riesz means and other regularizations of the Schrödinger group (eitA)t ∈ R. This generalizes results restricted to semigroups with a heat kernel, which are due to Sjöstrand, Alexopoulos and more recently Carron, Coulhon and Ouhabaz. This generalization is crucial for elliptic operators A that are of higher order or have singular lower order terms since, in general, their semigroups fail to have a heat kernel.
Blackwell (1951), in his seminal work on comparison of experiments, ordered two experiments using a dilation ordering: one experiment, Y, is ‘more spread out’ in the sense of dilation than another one, X, if E(c(Y))≥E(c(X)) for all convex functions c. He showed that this ordering is equivalent to two other orderings, namely (i) a total time on test ordering and (ii) a martingale relationship E(Yʹ | Xʹ)=Xʹ, where (Xʹ,Yʹ) has a joint distribution with the same marginals as X and Y. These comparisons are generalized to balayage orderings that are defined in terms of generalized convex functions. These balayage orderings are equivalent to (i) iterated total integral of survival orderings and (ii) martingale-type orderings which we refer to as k-mart orderings. These comparisons can arise naturally in model fitting and data confidentiality contexts.
The paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29(1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.