To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The authors establish the boundedness on the Herz spaces and the weak Herz spaces for a large class of rough singular integral operators and their corresponding fractional versions. Applications are given to Fefferman's rough singular integral operators, their fractional versions, their commutators with BMO() functions and Ricci-Stein oscillatory singular integral operators. Some new results are obtained.
We prove a new representation of the generator of a subordinate semigroup as limit of bounded operators. Our construction yields, in particular, a characterization of the domain of the generator. The generator of a subordinate semigroup can be viewed as a function of the generator of the original semigroup. For a large class these functions we show that operations at the level of functions has its counterpart at the level of operators.
Iseki [11] defined a general notion of ergodicity suitable for functions ϕ: J → X where J is an arbitrary abelian semigroup and X is a Banach space. In this paper we develop the theory of such functions, showing in particular that it fits the general framework established by Eberlein [9] for ergodicity of semigroups of operators acting on X. Moreover, let A be a translation invariant closed subspace of the space of all bounded functions from J to X. We prove that if A contains the constant functions and ϕ is an ergodic function whose differences lie in A then ϕ ∈ A. This result has applications to spaces of sequences facilitating new proofs of theorems of Gelfand and Katznelson-Tzafriri [12]. We also obtain a decomposition for the space of ergodic vectors of a representation T: J → L(X) generalizing results known for the case J = Z+. Finally, when J is a subsemigroup of a locally compact abelian group G, we compare the Iseki integrals with the better known Cesàro integrals.
In Banach space operators with a bounded H∞ functional calculus, Cowling et al. provide some necessary and sufficient conditions for a type-ω operator to have a bounded H∞ functional calculus. We provide an alternate development of some of their ideas using a modified Cauchy kernel which is L1 with respect to the measure ]dz]/]z]. The method is direct and has the advantage that no transforms of the functions are necessary.
We investigate the relationship between the peripheral spectrum of a positive operator T on a Banach lattice E and the peripheral spectrum of the operators S dominated by T, that is, ]Sx] ≤ T]x] for all x ε E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.
In this paper, we give a general definition for f(T) when T is a linear operator acting in a Banach space, whose spectrum lies within some sector, and which satisfies certain resolvent bounds, and when f is holomorphic on a larger sector.
We also examine how certain properties of this functional calculus, such as the existence of a bounded H∈ functional calculus, bounds on the imaginary powers, and square function estimates are related. In particular we show that, if T is acting in a reflexive Lp space, then T has a bounded H∈ functional calculus if and only if both T and its dual satisfy square function estimates. Examples are given to show that some of the theorems that hold for operators in a Hilbert space do not extend to the general Banach space setting.
We prove estimates on the speed of convergence of the ‘peripheral eigenvalues’ (and principal eigenvectors) of a sequence Tn of positive operators on a Banach lattice E to the peripheral eigenvalues of its limit operator T on E which is positive, irreducible and such that the spectral radius r(T) of T is a Riesz point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under some conditions on the kind of approximation of Tn to T. These results sharpen results of convergence obtained by the authors in previous papers.
Let M be an invariant subspace of L2 (T2) on the bidisc. V1 and V2 denote the multiplication operators on M by coordinate functions z and ω, respectively. In this paper we study the relation between M and the commutator of V1 and , For example, M is studied when the commutator is self-adjoint or of finite rank.
We construct a functional calculus, g → g(A), for functions, g, that are the sum of a Stieltjes function and a nonnegative operator monotone function, and unbounded linear operators, A, whose resolvent set contains (−∞, 0), with {‖r(r + A)−1‖ ¦ r > 0} bounded. For such functions g, we show that –g(A) generates a bounded holomorphic strongly continuous semigroup of angle θ, whenever –A does.
We show that, for any Bernstein function f, − f(A) generates a bounded holomorphic strongly continuous semigroup of angle π/2, whenever − A does.
We also prove some new results about the Bochner-Phillips functional calculus. We discuss the relationship between fractional powers and our construction.
Well-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact interval. Depending on the weak compactness of this functional calculus, one obtains one of two types of spectral theorem for these operators. A method is given which enables one to obtain both spectral theorems by simply changing the topology used. Even for the case of well-bounded operators of type (B), the proof given is more elementary than that previously in the literature.
Ahues (1987) and Bouldin (1990) have given sufficient conditions for the strong stability of a sequence (Tn) of operators at an isolated eigenvalue of an operator T. This paper provides a unified treatment of their results and also generalizes so as to facilitate their application to a broad class of operators.
In a series of papers, the author has previously investigated the spectra and fine spectra for weighted mean matrices, considered as bounded operators over various sequence spaces. This paper examines the spectra of weighted mean matrices as operators over bνv0, the space of null sequences of bounded variation.
In this paper we will characterize the spectrum of a hyponormal operator and the joint spectrum of a doubly commuting n-tuple of strongly hyponormal operators on a uniformly smooth space. We also describe some applications of these results.
Suppose λ is an isolated eigenvalue of the (bounded linear) operator T on the Banach space X and the algebraic multiplicity of λ is finite. Let Tn be a sequence of operators on X that converge to T pointwise, that is, Tnx → Tx for every x ∈ X. If ‖(T − Tn)Tn‖ and ‖Tn(T − Tn)‖ converge to 0 then Tn is strongly stable at λ.
Let λ0 be a semisimple eigenvalue of an operator T0. Let Γ0 be a circle with centre λs0 containing no other spectral value of T0. Some lower bounds are obtained for the convergence radius of the power series for the spectral projection P(t) and for trace T(t)P(t) associated with linear perturbation family T(t) = T0 + tV0 and the circle Γ0. They are useful when T0 is a member of a sequence (Tn) which approximates an operator T in a collectively compact manner. These bounds result from a modification of Kato's method of majorizing series, based on an idea of Redont. I λ0 is simple, it is shown that the same lower bound are valid for the convergence radius of a power series yielding an eigenvector of T(t).
In 1985 John Reade determined the spectrum of C1 regarded as an operator on the space c0 of all null sequences normed by ║x║ = supn≧0|xn|. It is the purpose of this paper to determine the spectrum of C1 regarded as an operator on the space bv0 of all sequences x such that xk → 0 as k → ∞ and .
The purpose of this paper is to show that higher order elliptic partial differential operators on smooth domains have an H∞ functional calculus and satisfy quadratic estimates in Lp spaces on these domains.
A.McIntosh and A. Pryde introduced and gave some applications of notion of “spectral set”, γ(T), associated with each finite, commuting family of continuous linear operators T in a Banach space. Unlike most concepts of joint spectrum, the set γ(T) is part of real Euclidean space. It is shown that γ(T) is always non-empty whenver there are at least two operators in T.
In this note, a brief and accessible proof is given of an extension of the Pták homomorphism theorem to a larger class of spaces—spaces that are not necessarily assumed to be locally convex. This is done by first proving a counterpart of the Bourbaki-Grothendieck homomophism theorem for the non-locally-convex case. Our presentation utilizes the simplifying properties of seminorms.