We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
We establish a Wold-type decomposition for isometric and isometric Nica-covariant representations of the odometer semigroup. These generalize the Wold-type decomposition for commuting pairs of isometries due to Popovici and for pairs of doubly commuting isometries due to Słociński.
Our first result is a noncommutative form of the Jessen-Marcinkiewicz-Zygmund theorem for the maximal limit of multiparametric martingales or ergodic means. It implies bilateral almost uniform convergence (a noncommutative analogue of almost everywhere convergence) with initial data in the expected Orlicz spaces. A key ingredient is the introduction of the
$L_p$
-norm of the
$\limsup $
of a sequence of operators as a localized version of a
$\ell _\infty /c_0$
-valued
$L_p$
-space. In particular, our main result gives a strong
$L_1$
-estimate for the
$\limsup $
—as opposed to the usual weak
$L_{1,\infty }$
-estimate for the
$\mathop {\mathrm {sup}}\limits $
—with interesting consequences for the free group algebra.
Let
$\mathcal{L} \mathbf{F} _2$
denote the free group algebra with
$2$
generators, and consider the free Poisson semigroup generated by the usual length function. It is an open problem to determine the largest class inside
$L_1(\mathcal{L} \mathbf{F} _2)$
for which the free Poisson semigroup converges to the initial data. Currently, the best known result is
$L \log ^2 L(\mathcal{L} \mathbf{F} _2)$
. We improve this result by adding to it the operators in
$L_1(\mathcal{L} \mathbf{F} _2)$
spanned by words without signs changes. Contrary to other related results in the literature, this set grows exponentially with length. The proof relies on our estimates for the noncommutative
$\limsup $
together with new transference techniques.
We also establish a noncommutative form of Córdoba/Feffermann/Guzmán inequality for the strong maximal: more precisely, a weak
$(\Phi ,\Phi )$
inequality—as opposed to weak
$(\Phi ,1)$
—for noncommutative multiparametric martingales and
$\Phi (s) = s (1 + \log _+ s)^{2 + \varepsilon }$
. This logarithmic power is an
$\varepsilon $
-perturbation of the expected optimal one. The proof combines a refinement of Cuculescu’s construction with a quantum probabilistic interpretation of M. de Guzmán’s original argument. The commutative form of our argument gives the simplest known proof of this classical inequality. A few interesting consequences are derived for Cuculescu’s projections.
We consider Kolmorogov operator
$-\Delta +b \cdot \nabla $
with drift b in the class of form-bounded vector fields (containing vector fields having critical-order singularities). We characterize quantitative dependence of the Sobolev and Hölder regularity of solutions to the corresponding elliptic equation on the value of the form-bound of b.
In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.
Let $X$ be a space of homogeneous type and $L$ be a nonnegative self-adjoint operator on $L^{2}(X)$ satisfying Gaussian upper bounds on its heat kernels. In this paper, we develop the theory of weighted Besov spaces ${\dot{B}}_{p,q,w}^{\unicode[STIX]{x1D6FC},L}(X)$ and weighted Triebel–Lizorkin spaces ${\dot{F}}_{p,q,w}^{\unicode[STIX]{x1D6FC},L}(X)$ associated with the operator $L$ for the full range $0<p,q\leqslant \infty$, $\unicode[STIX]{x1D6FC}\in \mathbb{R}$ and $w$ being in the Muckenhoupt weight class $A_{\infty }$. Under rather weak assumptions on $L$ as stated above, we prove that our new spaces satisfy important features such as continuous characterizations in terms of square functions, atomic decompositions and the identifications with some well-known function spaces such as Hardy-type spaces and Sobolev-type spaces. One of the highlights of our result is the characterization of these spaces via noncompactly supported functional calculus. An important by-product of this characterization is the characterization via the heat kernel for the full range of indices. Moreover, with extra assumptions on the operator $L$, we prove that the new function spaces associated with $L$ coincide with the classical function spaces. Finally we apply our results to prove the boundedness of the fractional power of $L$, the spectral multiplier of $L$ in our new function spaces and the dispersive estimates of wave equations.
We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order), Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete characterization of those composition operators that are similar to an isometry on these various Banach spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on these various Banach spaces.
Let ${\mathcal{D}}$ be a Schauder decomposition on some Banach space $X$. We prove that if ${\mathcal{D}}$ is not $R$-Schauder, then there exists a Ritt operator $T\in B(X)$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{T^{n}:n\geq 0\}$ is not $R$-bounded. Likewise, we prove that there exists a bounded sectorial operator $A$ of type $0$ on $X$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{e^{-tA}:t\geq 0\}$ is not $R$-bounded.
We study the existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Results on the existence of almost periodic-type solutions (including, periodic, almost periodic, asymptotically almost periodic and almost automorphic solutions) are proved. Some examples of partial differential equations with state-dependent delay arising in population dynamics are presented.
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.
We study the existence and uniqueness of ${\mathcal{S}}$-asymptotically periodic solutions for a general class of
abstract differential equations with state-dependent delay. Some examples
related to problems arising in population dynamics are presented.
We consider abstract Sobolev spaces of Bessel-type associated with an operator. In this work, we pursue the study of algebra properties of such functional spaces through the corresponding semigroup. As a follow-up to our previous work, we show that by making use of the property of a ‘carré du champ’ identity, this algebra property holds in a wider range than previously shown.
Uniformization transforms a pseudo-Poisson process with unequal intensities (leaving rates) into one with uniform intensity. Self-transitions is the price to pay. Two intensities arise when one considers an absorbing barrier of a Markov process as a body in its own right: a pair of Markov processes intertwined by an extended Chapman–Kolmogorov equation naturally arises. We show that Sauer's two-state space empathy theory handles such intertwined processes. The price of self-transitions is also avoided.
We carry out an in-depth study of some domination and smoothing properties of linear operators and of their role within the theory of eventually positive operator semigroups. On the one hand, we prove that, on many important function spaces, they imply compactness properties. On the other hand, we show that these conditions can be omitted in a number of Perron–Frobenius type spectral theorems. We furthermore prove a Kreĭn–Rutman type theorem on the existence of positive eigenvectors and eigenfunctionals under certain eventual positivity conditions.
We investigate $L^{p}(\unicode[STIX]{x1D6FE})$–$L^{q}(\unicode[STIX]{x1D6FE})$ off-diagonal estimates for the Ornstein–Uhlenbeck semigroup $(e^{tL})_{t>0}$. For sufficiently large $t$ (quantified in terms of $p$ and $q$), these estimates hold in an unrestricted sense, while, for sufficiently small $t$, they fail when restricted to maximal admissible balls and sufficiently small annuli. Our counterexample uses Mehler kernel estimates.
We give necessary and sufficient conditions for the Lp-well-posedness of the second-order degenerate differential equations with finite delay
with periodic boundary conditions (Mu)(0) = (Mu)(2π), (Mu)′(0) = (Mu)′(2π). Here A and M are closed operators on a complex Banach space X satisfying D(A) ⊂ D(M), α ∈ ℂ is fixed, F is a bounded linear operator from Lp([−2π, 0],X) into X, and ut is given by ut(s) = u(t + s) when s ∈ [−2π, 0].
We consider first-order hyperbolic systems on an interval with dynamic boundary conditions. These systems occur when the ordinary differential equation dynamics on the boundary interact with the waves in the interior. The well-posedness for linear systems is established using an abstract Friedrichs theorem. Due to the limited regularity of the coefficients, we need to introduce the appropriate space of test functions for the weak formulation. It is shown that the weak solutions exhibit a hidden regularity at the boundary as well as at interior points. As a consequence, the dynamics of the boundary components satisfy an additional regularity. Neither result can be achieved from standard semigroup methods. Nevertheless, we show that our weak solutions and the semigroup solutions coincide. For illustration, we give three particular physical examples that fit into our framework.
We introduce the concepts of growth and spectral bound for strongly continuous semigroups acting on Fréchet spaces and show that the Banach space inequality s(A) ⩽ ω0(T) extends to the new setting. Via a concrete example of an even uniformly continuous semigroup, we illustrate that for Fréchet spaces effects with respect to these bounds may happen that cannot occur on a Banach space.
It is proved that the resolvent norm of an operator with a compact resolvent on a Banach space $X$ cannot be constant on an open set if the underlying space or its dual is complex strictly convex. It is also shown that this is not the case for an arbitrary Banach space: there exists a separable, reflexive space $X$ and an unbounded, densely defined operator acting in $X$ with a compact resolvent whose norm is constant in a neighbourhood of zero; moreover $X$ is isometric to a Hilbert space on a subspace of co-dimension $2$. There is also a bounded linear operator acting on the same space whose resolvent norm is constant in a neighbourhood of zero. It is shown that similar examples cannot exist in the co-dimension $1$ case.