We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study a finite connected graph which admits a quasi-monomorphism to hyperbolic spaces and give a geometric bound for the Cheeger constants in terms of the volume, an upper bound of the degree, and the quasi-monomorphism.
We prove that on any compact manifold $M^{n}$ with boundary, there exists a conformal class $C$ such that for any Riemannian metric $g\in C$ of unit volume, the first positive eigenvalue of the Neumann Laplacian satisfies ${\it\lambda}_{1}(M^{n},g)<n\,\text{Vol}(S^{n},g_{\text{can}})^{2/n}$. We also prove a similar inequality for the first positive Steklov eigenvalue. The proof relies on a handle decomposition of the manifold. We also prove that the conformal volume of $(M,C)$ is $\text{Vol}(S^{n},g_{\text{can}})$, and that the Friedlander–Nadirashvili invariant and the Möbius volume of $M$ are equal to those of the sphere. If $M$ is a domain in a space form, $C$ is the conformal class of the canonical metric.
We prove sufficient and necessary conditions for compactness of the Sobolev embeddings of Besov and Triebel–Lizorkin spaces defined on bounded and unbounded uniformly E-porous domains. The asymptotic behaviour of the corresponding entropy numbers is calculated. Some applications to the spectral properties of elliptic operators are described.
Spectral and dynamical properties of some one-dimensional continuous Schrödinger and Dirac operators with a class of sparse potentials (which take non-zero values only at some sparse and suitably randomly distributed positions) are studied. By adapting and extending to the continuous setting some of the techniques developed for the corresponding discrete operator cases, the Hausdorff dimension of their spectral measures and lower dynamical bounds for transport exponents are determined. Furthermore, it is found that the condition for the spectral Hausdorff dimension to be positive is the same for the existence of a singular continuous spectrum.
We show improved local energy decay for the wave equation on asymptotically Euclidean manifolds in odd dimensions in the short range case. The precise decay rate depends on the decay of the metric towards the Euclidean metric. We also give estimates of powers of the resolvent of the wave propagator between weighted spaces.
We study operators of Kramers–Fokker–Planck type in the semiclassical limit, assuming that the exponent of the associated Maxwellian is a Morse function with a finite number n0 of local minima. Under suitable additional assumptions, we show that the first n0 eigenvalues are real and exponentially small, and establish the complete semiclassical asymptotics for these eigenvalues.
In this note it is shown that a result of Champion and De Pascale [‘Asymptotic behavior of nonlinear eigenvalue problems involving p-Laplacian type operators’, Proc. Roy. Soc. Edinburgh Sect. A137 (2007), 1179–1195] implies that the variational eigenvalues of the p-Laplacian are continuous with respect to p.
We obtain solvability conditions for some elliptic equations involving non-Fredholm operators with the methods of spectral theory and scattering theory for Schrödinger-type operators. One of the main results of the paper concerns solvability conditions for the equation –Δu + V(x)u–au = f where a ≥ 0. The conditions are formulated in terms of orthogonality of the function f to the solutions of the homogeneous adjoint equation.
We consider an eigenvalue problem for a divergence-form elliptic operator Aε that has high-contrast periodic coefficients with period ε in each coordinate, where ε is a small parameter. The coefficients are perturbed on a bounded domain of “order one” size. The local perturbation of coefficients for such an operator could result in the emergence of localized waves—eigenfunctions whose corresponding eigenvalues lie in the gaps of the Floquet–Bloch spectrum. For the so-called double porosity-type scaling, we prove that the eigenfunctions decay exponentially at infinity, uniformly in ε Then, using the tools of twoscale convergence for high-contrast homogenization, we prove the strong two-scale compactness of the eigenfunctions of Aε. This implies that the eigenfunctions converge in the sense of strong two-scale convergence to the eigenfunctions of a two-scale limit homogenized operator A0, consequently establishing “asymptotic one-to-one correspondence” between the eigenvalues and the eigenfunctions of the operators Aε and A0. We also prove, by direct means, the stability of the essential spectrum of the homogenized operator with respect to local perturbation of its coefficients. This allows us to establish not only the strong two-scale resolvent convergence of Aε to A0 but also the Hausdorff convergence of the spectra of Aε to the spectrum of A0, preserving the multiplicity of the isolated eigenvalues.
The problem of finding necessary and sufficient condi-tions for the existence of trapped modes in waveguides has been known since 1943. [10]. The problem is the following: consider an infinite strip M in ℝ2(or an infinite cylinder with the smooth boundary in ℝn). The spectrum of the(positive) Laplacian, with either Dirichlet or Neumann boundary conditions, acting on this strip is easily computable via the separation of variables; the spectrum is absolutely continuous and equals [v0,+∞). Here, v0 is the first threshold, i.e., eigenvalue of the cross-section of the cylinder (so v0 = 0 in the case of Neumann conditions). Let us now consider the domain (the waveguide) which is a smooth compact perturbation of M (for example, weinsert an obstacle inside M). The essential spectrum of the Laplacian acting on still equals [v0, +ℝ), but there may be additional eigenvalues, which are often called trapped modes; the number of these trapped modes can be quite large, see examples in [11] and [8].
In this paper, we apply coupling methods to study strong ergodicity for Markov processes, and sufficient conditions are presented in terms of the expectations of coupling times. In particular, explicit criteria are obtained for one-dimensional diffusions and birth-death processes to be strongly ergodic. As a by-product, strong ergodicity implies that the essential spectra of the generators for these processes are empty.
In this paper we extend a theorem of Mallet-Paret and Sell for the existence of an inertial manifold for a scalar-valued reaction diffusion equation to new physical domains ωn ⊂ Rn, n = 2,3. For their result the Principle of Spatial Averaging (PSA), which certain domains may possess, plays a key role for the existence of an inertial manifold. Instead of the PSA, we define a weaker PSA and prove that the domains φn with appropriate boundary conditions for the Laplace operator, δ, satisfy a weaker PSA. This weaker PSA is enough to ensure the existence of an inertial manifold for a specific class of scalar-valued reaction diffusion equations on each domain ωn under suitable conditions.
Let M be a smooth bounded domain in Rn with smooth boundary, n ≥ 2, and . We prove an inequality involving the first k + 1 eigenvalues of the eigenvalue problem: where am−1 ≥ 0 are constants and at−1 = 1. We also obtain a uniform estimate of the upper bound of the ratios of consecutive eigenvalues.
Let 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ … denote the sequence of eigenvalues of the Laplacian of a compact minimal submanifold in a unit sphere. Yang and Yau obtained an upper bound on λn+1 in terms of λn and the sum λ1 + … + λn. In this note we shall prove an improved version of this upper bound by using the method of Hile and Protter.
We give sufficient conditions for the spectra and essential spectra of certain classes of operators to be contained in or coincide with an interval of the form [μ, ∞).