We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study a general eigenvalue problem for the so called (p, 2)-Laplace operator on a smooth bounded domain Ω ⊂ ℝN under a nonlinear Steklov type boundary condition, namely
For positive weight functions a and b satisfying appropriate integrability and boundedness assumptions, we show that, for all p>1, the eigenvalue set consists of an isolated null eigenvalue plus a continuous family of eigenvalues located away from zero.
Given a smooth compact hypersurface $M$ with boundary $\unicode[STIX]{x1D6F4}=\unicode[STIX]{x2202}M$, we prove the existence of a sequence $M_{j}$ of hypersurfaces with the same boundary as $M$, such that each Steklov eigenvalue $\unicode[STIX]{x1D70E}_{k}(M_{j})$ tends to zero as $j$ tends to infinity. The hypersurfaces $M_{j}$ are obtained from $M$ by a local perturbation near a point of its boundary. Their volumes and diameters are arbitrarily close to those of $M$, while the principal curvatures of the boundary remain unchanged.
Using Roelcke’s formula for the Green function, we explicitly construct a basis in the kernel of the adjoint Laplacian on a compact polyhedral surface $X$ and compute the $S$-matrix of $X$ at the zero value of the spectral parameter. We apply these results to study various self-adjoint extensions of a symmetric Laplacian on a compact polyhedral surface of genus two with a single conical point. It turns out that the behaviour of the $S$-matrix at the zero value of the spectral parameter is sensitive to the geometry of the polyhedron.
For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, smooth and strictly convex domains (or more general domains of finite type). A new first-order correction term is introduced to derive the expansion of eigenfunctions in L2 or $H^1_{\rm loc}$. Our results rely on the recent progress on the homogenization of boundary layer problems.
The second eigenvalue of the Robin Laplacian is shown to be maximal for the disk among simply-connected planar domains of fixed area when the Robin parameter is scaled by perimeter in the form $\unicode[STIX]{x1D6FC}/L(\unicode[STIX]{x1D6FA})$, and $\unicode[STIX]{x1D6FC}$ lies between $-2\unicode[STIX]{x1D70B}$ and $2\unicode[STIX]{x1D70B}$. Corollaries include Szegő’s sharp upper bound on the second eigenvalue of the Neumann Laplacian under area normalization, and Weinstock’s inequality for the first nonzero Steklov eigenvalue for simply-connected domains of given perimeter.
The first Robin eigenvalue is maximal, under the same conditions, for the degenerate rectangle. When area normalization on the domain is changed to conformal mapping normalization and the Robin parameter is positive, the maximiser of the first eigenvalue changes back to the disk.
This paper is concerned with the maximisation of the $k$-th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension $d$ as $k$ goes to infinity. We show that in any dimension maximisers exist for any given $k$, but that any sequence of maximisers degenerates as $k$ goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the $k$-th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
The stationary Gross–Pitaevskii equation in one dimension is considered with a complex periodic potential satisfying the conditions of the 𝒫𝒯 (parity-time reversal) symmetry. Under rather general assumptions on the potentials, we prove bifurcations of 𝒫𝒯-symmetric nonlinear bound states from the end points of a real interval in the spectrum of the non-selfadjoint linear Schrödinger operator with a complex 𝒫𝒯-symmetric periodic potential. The nonlinear bound states are approximated by the effective amplitude equation, which bears the form of the cubic nonlinear Schrödinger equation. In addition, we provide sufficient conditions for the appearance of complex spectral bands when the complex 𝒫𝒯-symmetric potential has an asymptotically small imaginary part.
We consider a class of Schrödinger operators on ${\open R}^N$ with radial potentials. Viewing them as self-adjoint operators on the space of radially symmetric functions in $L^2({\open R}^N)$, we show that the following properties are generic with respect to the potential:
(P1) the eigenvalues below the essential spectrum are nonresonant (i.e., rationally independent) and so are the square roots of the moduli of these eigenvalues;
(P2) the eigenfunctions corresponding to the eigenvalues below the essential spectrum are algebraically independent on any nonempty open set.
The genericity means that in suitable topologies the potentials having the above properties form a residual set. As we explain, (P1), (P2) are prerequisites for some applications of KAM-type results to nonlinear elliptic equations. Similar properties also play a role in optimal control and other problems in linear and nonlinear partial differential equations.
Excitation of surface-plasmon resonances of closely spaced nanometallic structures is a key technique used in nanoplasmonics to control light on subwavelength scales and generate highly confined electric-field hotspots. In this paper, we develop asymptotic approximations in the near-contact limit for the entire set of surface-plasmon modes associated with the prototypical sphere dimer geometry. Starting from the quasi-static plasmonic eigenvalue problem, we employ the method of matched asymptotic expansions between a gap region, where the boundaries are approximately paraboloidal, pole regions within the spheres and close to the gap, and a particle-scale region where the spheres appear to touch at leading order. For those modes that are strongly localised to the gap, relating the gap and pole regions gives a set of effective eigenvalue problems formulated over a half space representing one of the poles. We solve these problems using integral transforms, finding asymptotic approximations, singular in the dimensionless gap width, for the eigenvalues and eigenfunctions. In the special case of modes that are both axisymmetric and odd about the plane bisecting the gap, where matching with the outer region introduces a logarithmic dependence upon the dimensionless gap width, our analysis follows Schnitzer [Singular perturbations approach to localized surface-plasmon resonance: nearly touching metal nanospheres. Phys. Rev. B92(23), 235428 (2015)]. We also analyse the so-called anomalous family of even modes, characterised by field distributions excluded from the gap. We demonstrate excellent agreement between our asymptotic formulae and exact calculations.
In this paper we study spectral properties of the Dirichlet-to-Neumann map on differential forms obtained by a slight modification of the definition due to Belishev and Sharafutdinov. The resulting operator $\unicode[STIX]{x039B}$ is shown to be self-adjoint on the subspace of coclosed forms and to have purely discrete spectrum there. We investigate properties of eigenvalues of $\unicode[STIX]{x039B}$ and prove a Hersch–Payne–Schiffer type inequality relating products of those eigenvalues to eigenvalues of the Hodge Laplacian on the boundary. Moreover, non-trivial eigenvalues of $\unicode[STIX]{x039B}$ are always at least as large as eigenvalues of the Dirichlet-to-Neumann map defined by Raulot and Savo. Finally, we remark that a particular case of $p$-forms on the boundary of a $2p+2$-dimensional manifold shares many important properties with the classical Steklov eigenvalue problem on surfaces.
We study the fine-scale $L^{2}$-mass distribution of toral Laplace eigenfunctions with respect to random position in two and three dimensions. In two dimensions, under certain flatness assumptions on the Fourier coefficients and generic restrictions on energy levels, both the asymptotic shape of the variance is determined and the limiting Gaussian law is established in the optimal Planck-scale regime. In three dimensions the asymptotic behaviour of the variance is analysed in a more restrictive scenario (“Bourgain’s eigenfunctions”). Other than the said precise results, lower and upper bounds are proved for the variance under more general flatness assumptions on the Fourier coefficients.
We use bifurcation and topological methods to investigate the existence/nonexistence and the multiplicity of positive solutions of the following quasilinear Schrödinger equation
involving sublinear/linear/superlinear nonlinearities at zero or infinity with/without signum condition. In particular, we study the changes in the structure of positive solution with κ as the varying parameter.
where Ω is a bounded Lipschitz domain in ℝN with a cylindrical symmetry, ν stands for the outer normal and $\partial \Omega = \overline {\Gamma _1} \cup \overline {\Gamma _2} $.
Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem.
As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem
For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L2 (Ω) × L2(Γ2).
In this paper, we prove the existence and uniqueness of a positive solution for a nonlocal logistic equation arising from the birth-jump processes. For this, we establish a sub-super solution method for nonlocal elliptic equations, we perform a study of the eigenvalue problems associated with these equations and we apply these results to the nonlocal logistic equation.
The paper is concerned with the Steklov eigenvalue problem on cuboids of arbitrary dimension. We prove a two-term asymptotic formula for the counting function of Steklov eigenvalues on cuboids in dimension $d\geqslant 3$. Apart from the standard Weyl term, we calculate explicitly the second term in the asymptotics, capturing the contribution of the $(d-2)$-dimensional facets of a cuboid. Our approach is based on lattice counting techniques. While this strategy is similar to the one used for the Dirichlet Laplacian, the Steklov case carries additional complications. In particular, it is not clear how to establish directly the completeness of the system of Steklov eigenfunctions admitting separation of variables. We prove this result using a family of auxiliary Robin boundary value problems. Moreover, the correspondence between the Steklov eigenvalues and lattice points is not exact, and hence more delicate analysis is required to obtain spectral asymptotics. Some other related results are presented, such as an isoperimetric inequality for the first Steklov eigenvalue, a concentration property of high frequency Steklov eigenfunctions and applications to spectral determination of cuboids.
We analyse the behaviour of the spectrum of the system of Maxwell equations of electromagnetism, with rapidly oscillating periodic coefficients, subject to periodic boundary conditions on a “macroscopic” domain $(0,T)^{3},T>0.$ We consider the case where the contrast between the values of the coefficients in different parts of their periodicity cell increases as the period of oscillations $\unicode[STIX]{x1D702}$ goes to zero. We show that the limit of the spectrum as $\unicode[STIX]{x1D702}\rightarrow 0$ contains the spectrum of a “homogenized” system of equations that is solved by the limits of sequences of eigenfunctions of the original problem. We investigate the behaviour of this system and demonstrate phenomena not present in the scalar theory for polarized waves.
This paper is devoted to dimensional reductions via the norm-resolvent convergence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics. The efficiency of our abstract tool is demonstrated by its application on seemingly different partial differential equation problems from various areas of mathematical physics; all are analysed in a unified manner, known results are recovered and new ones established.
In this paper we analyse possible extensions of the classical Steklov eigenvalue problem to the fractional setting. In particular, we find a non-local eigenvalue problem of fractional type that approximates, when taking a suitable limit, the classical Steklov eigenvalue problem.
We consider the existence of normalized solutions in H1(ℝN) × H1(ℝN) for systems of nonlinear Schr¨odinger equations, which appear in models for binary mixtures of ultracold quantum gases. Making a solitary wave ansatz, one is led to coupled systems of elliptic equations of the form
and we are looking for solutions satisfying
where a1> 0 and a2> 0 are prescribed. In the system, λ1 and λ2 are unknown and will appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e. , with positive constants β, μi, pi, ri. The exponents are Sobolev subcritical but may be L2-supercritical. Our main result deals with the case in which in dimensions 2 ≤ N ≤ 4. We also consider the cases in which all of these numbers are less than 2 + 4/N or all are bigger than 2 + 4/N.