We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the $4$-state anti-ferromagnetic Potts model with interaction parameter $w\in (0,1)$ on the infinite $(d+1)$-regular tree has a unique Gibbs measure if $w\geq 1-\dfrac{4}{d+1_{_{\;}}}$ for all $d\geq 4$. This is tight since it is known that there are multiple Gibbs measures when $0\leq w\lt 1-\dfrac{4}{d+1}$ and $d\geq 4$. We moreover give a new proof of the uniqueness of the Gibbs measure for the $3$-state Potts model on the $(d+1)$-regular tree for $w\geq 1-\dfrac{3}{d+1}$ when $d\geq 3$ and for $w\in (0,1)$ when $d=2$.
The study of threshold functions has a long history in random graph theory. It is known that the thresholds for minimum degree k, k-connectivity, as well as k-robustness coincide for a binomial random graph. In this paper we consider an inhomogeneous random graph model, which is obtained by including each possible edge independently with an individual probability. Based on an intuitive concept of neighborhood density, we show two sufficient conditions guaranteeing k-connectivity and k-robustness, respectively, which are asymptotically equivalent. Our framework sheds some light on extending uniform threshold values in homogeneous random graphs to threshold landscapes in inhomogeneous random graphs.
Let $G=(S,T,E)$ be a bipartite graph. For a matching $M$ of $G$, let $V(M)$ be the set of vertices covered by $M$, and let $B(M)$ be the symmetric difference of $V(M)$ and $S$. We prove that if $M$ is a uniform random matching of $G$, then $B(M)$ satisfies the BK inequality for increasing events.
We use an inequality of Sidorenko to show a general relation between local and global subgraph counts and degree moments for locally weakly convergent sequences of sparse random graphs. This yields an optimal criterion to check when the asymptotic behaviour of graph statistics, such as the clustering coefficient and assortativity, is determined by the local weak limit.
As an application we obtain new facts for several common models of sparse random intersection graphs where the local weak limit, as we see here, is a simple random clique tree corresponding to a certain two-type Galton–Watson branching process.
We derive the asymptotic behavior of the total, active, and inactive branch lengths of the seed bank coalescent when the initial sample size grows to infinity. These random variables have important applications for populations evolving under some seed bank effects, such as plants and bacteria, and for some cases of structured populations like metapopulations. The proof relies on the analysis of the tree at a stopping time corresponding to the first time a deactivated lineage is reactivated. We also give conditional sampling formulas for the random partition, and we study the system at the time of the first reactivation of a lineage. All these results provide a good picture of the different regimes and behaviors of the block-counting process of the seed bank coalescent.
We study two models of an age-biased graph process: the $\delta$-version of the preferential attachment graph model (PAM) and the uniform attachment graph model (UAM), with m attachments for each of the incoming vertices. We show that almost surely the scaled size of a breadth-first (descendant) tree rooted at a fixed vertex converges, for $m=1$, to a limit whose distribution is a mixture of two beta distributions and a single beta distribution respectively, and that for $m>1$ the limit is 1. We also analyze the likely performance of two greedy (online) algorithms, for a large matching set and a large independent set, and determine – for each model and each greedy algorithm – both a limiting fraction of vertices involved and an almost sure convergence rate.
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works by Martinelli, Morris, Toninelli and the authors, it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the companion paper by the first author, our work determines the logarithm of the infection time up to a constant factor for all critical KCM, which were previously known only up to logarithmic corrections. This improves all previous results except for the Duarte-KCM, for which we give a new proof of the best result known. We establish that on this level of precision critical KCM have to be classified into seven categories instead of the two in bootstrap percolation. In the present work, we establish lower bounds for critical KCM in a unified way, also recovering the universality result of Toninelli and the authors and the Duarte model result of Martinelli, Toninelli and the second author.
We investigate random minimal factorizations of the n-cycle, that is, factorizations of the permutation $(1 \, 2 \cdots n)$ into a product of cycles $\tau_1, \ldots, \tau_k$ whose lengths $\ell(\tau_1), \ldots, \ell(\tau_k)$ satisfy the minimality condition $\sum_{i=1}^k(\ell(\tau_i)-1)=n-1$. By associating to a cycle of the factorization a black polygon inscribed in the unit disk, and reading the cycles one after another, we code a minimal factorization by a process of colored laminations of the disk. These new objects are compact subsets made of red noncrossing chords delimiting faces that are either black or white. Our main result is the convergence of this process as $n \rightarrow \infty$, when the factorization is randomly chosen according to Boltzmann weights in the domain of attraction of an $\alpha$-stable law, for some $\alpha \in (1,2]$. The limiting process interpolates between the unit circle and a colored version of Kortchemski’s $\alpha$-stable lamination. Our principal tool in the study of this process is a new bijection between minimal factorizations and a model of size-conditioned labeled random trees whose vertices are colored black or white, as well as the investigation of the asymptotic properties of these trees.
We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form $p=p(n)=1/n+\lambda/n^{4/3}$ and A is large,
where $\mathcal{C}_{\max}$ is the largest connected component of the graph. Our result allows A and $\lambda$ to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.
We investigate properties of random mappings whose core is composed of derangements as opposed to permutations. Such mappings arise as the natural framework for studying the Screaming Toes game described, for example, by Peter Cameron. This mapping differs from the classical case primarily in the behaviour of the small components, and a number of explicit results are provided to illustrate these differences.
We investigate vertex levels of containment in a random hypergraph grown in the spirit of a recursive tree. We consider a local profile tracking the evolution of the containment of a particular vertex over time, and a global profile concerned with counts of the number of vertices of a particular containment level.
For the local containment profile, we obtain the exact mean, variance, and probability distribution in terms of standard combinatorial quantities such as generalized harmonic numbers and Stirling numbers of the first kind. Asymptotically, we observe phases: the early vertices have an asymptotically normal distribution, intermediate vertices have a Poisson distribution, and late vertices have a degenerate distribution.
As for the global containment profile, we establish an asymptotically normal distribution for the number of vertices at the smallest containment level as well as their covariances with the number of vertices at the second smallest containment level and the variances of these numbers. The orders in the variance–covariance matrix establish concentration laws.
We introduce a notion of finite sampling consistency for phylogenetic trees and show that the set of finitely sampling-consistent and exchangeable distributions on n-leaf phylogenetic trees is a polytope. We use this polytope to show that the set of all exchangeable and sampling-consistent distributions on four-leaf phylogenetic trees is exactly Aldous’ beta-splitting model, and give a description of some of the vertices for the polytope of distributions on five leaves. We also introduce a new semialgebraic set of exchangeable and sampling consistent models we call the multinomial model and use it to characterize the set of exchangeable and sampling-consistent distributions. Using this new model, we obtain a finite de Finetti-type theorem for rooted binary trees in the style of Diaconis’ theorem on finite exchangeable sequences.
Random intersection graphs model networks with communities, assuming an underlying bipartite structure of communities and individuals, where these communities may overlap. We generalize the model, allowing for arbitrary community structures within the communities. In our new model, communities may overlap, and they have their own internal structure described by arbitrary finite community graphs. Our model turns out to be tractable. We analyze the overlapping structure of the communities, show local weak convergence (including convergence of subgraph counts), and derive the asymptotic degree distribution and the local clustering coefficient.
In the localization game on a graph, the goal is to find a fixed but unknown target node $v^\star$ with the least number of distance queries possible. In the jth step of the game, the player queries a single node $v_j$ and receives, as an answer to their query, the distance between the nodes $v_j$ and $v^\star$. The sequential metric dimension (SMD) is the minimal number of queries that the player needs to guess the target with absolute certainty, no matter where the target is.
The term SMD originates from the related notion of metric dimension (MD), which can be defined the same way as the SMD except that the player’s queries are non-adaptive. In this work we extend the results of Bollobás, Mitsche, and Prałat [4] on the MD of Erdős–Rényi graphs to the SMD. We find that, in connected Erdős–Rényi graphs, the MD and the SMD are a constant factor apart. For the lower bound we present a clean analysis by combining tools developed for the MD and a novel coupling argument. For the upper bound we show that a strategy that greedily minimizes the number of candidate targets in each step uses asymptotically optimal queries in Erdős–Rényi graphs. Connections with source localization, binary search on graphs, and the birthday problem are discussed.
A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest.
In addition to the features of the two-parameter Chinese restaurant process (CRP), the restaurant under consideration has a cocktail bar and hence allows for a wider range of (bar and table) occupancy mechanisms. The model depends on three real parameters, $\alpha$, $\theta_1$, and $\theta_2$, fulfilling certain conditions. Results known for the two-parameter CRP are carried over to this model. We study the number of customers at the cocktail bar, the number of customers at each table, and the number of occupied tables after n customers have entered the restaurant. For $\alpha>0$ the number of occupied tables, properly scaled, is asymptotically three-parameter Mittag–Leffler distributed as n tends to infinity. We provide representations for the two- and three-parameter Mittag–Leffler distribution leading to efficient random number generators for these distributions. The proofs draw heavily from methods known for exchangeable random partitions, martingale methods known for generalized Pólya urns, and results known for the two-parameter CRP.
By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is explicit in terms of an eigenvector of the scheme.
Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an underdetermined system of linear equations $Ax = b$, where the coordinates of the vector x are restricted to take values in some small subset (e.g. $\{\pm 1\}$) of the underlying field. The classical ways of bounding this quantity are to use either a rank bound observation due to Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger conclusion except when the number of equations is significantly smaller than the number of variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify in practice. In this paper, using a novel approach to the anti-concentration problem for vector sums, we obtain new Halász-type inequalities that beat the Odlyzko bound even in settings where the number of equations is comparable to the number of variables. In addition to being stronger, our inequalities have hypotheses that are considerably easier to verify. We present two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the first non-trivial upper bound on the number of $n\times n$ Hadamard matrices and (ii) we improve a recent bound of Deneanu and Vu on the probability of normality of a random $\{\pm 1\}$ matrix.
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In this work, we study the distance profile, defined as the profile of all distances between pairs of vertices. We show that after a proper rescaling the distance profile converges to a continuous random function that can be described as the density of distances between random points in the Brownian continuum random tree. We show that this limiting function a.s. is Hölder continuous of any order $\alpha<1$, and that it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether it is Lipschitz, and whether it is continuously differentiable on the half-line $(0,\infty)$. The distance profile is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees. This is used in our proof, and we prove the corresponding convergence result for the distance profile of random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the notion of unrooted simply generated trees and include some simple results relating them to rooted simply generated trees, which might be of independent interest.
We prove several different anti-concentration inequalities for functions of independent Bernoulli-distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form 1/e + o(1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration inequality for polynomials with nonnegative coefficients which extends the classical Erdős–Littlewood–Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an application, we prove some new anti-concentration bounds for subgraph counts in random graphs.