We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper considers two variants of M/G/1 queues with impatient customers, which are denoted by M/G/1+Gw and M/G/1+Gs. In the M/G/1+Gw queue customers have deadlines for their waiting times, and they leave the system immediately if their services do not start before the expiration of their deadlines. On the other hand, in the M/G/1+Gs queue customers have deadlines for their sojourn times, where customers in service also immediately leave the system when their deadlines expire. In this paper we derive comparison results for performance measures of these models. In particular, we show that if the service time distribution is new better than used in expectation, then the loss probability in the M/G/1+Gs queue is greater than that in the M/G/1+Gw queue.
We couple a multi-type stochastic epidemic process with a directed random graph, where edges have random weights (traversal times). This random graph representation is used to characterise the fractions of individuals infected by the different types of vertices among all infected individuals in the large population limit. For this characterisation, we rely on the theory of multi-type real-time branching processes. We identify a special case of the two-type model in which the fraction of individuals of a certain type infected by individuals of the same type is maximised among all two-type epidemics approximated by branching processes with the same mean offspring matrix.
We analyse the jigsaw percolation process, which may be seen as a measure of whether two graphs on the same vertex set are ‘jointly connected’. Bollobás, Riordan, Slivken, and Smith (2017) proved that, when the two graphs are independent binomial random graphs, whether the jigsaw process percolates undergoes a phase transition when the product of the two probabilities is $\Theta({1}/{(n\ln n)})$. We show that this threshold is sharp, and that it lies at ${1}/{(4n\ln n)}$.
Based on a simple object, an i.i.d. sequence of positive integer-valued random variables {an}n∊ℤ, we introduce and study two random structures and their connections. First, a population dynamics, in which each individual is born at time n and dies at time n + an. This dynamics is that of a D/GI/∞ queue, with arrivals at integer times and service times given by {an}n∊ℤ. Second, the directed random graph Tf on ℤ generated by the random map f(n) = n + an. Assuming only that E [a0] < ∞ and P [a0 = 1] > 0, we show that, in steady state, the population dynamics is regenerative, with one individual alive at each regeneration epoch. We identify a unimodular structure in this dynamics. More precisely, Tf is a unimodular directed tree, in which f(n) is the parent of n. This tree has a unique bi-infinite path. Moreover, Tf splits the integers into two categories: ephemeral integers, with a finite number of descendants of all degrees, and successful integers, with an infinite number. Each regeneration epoch is a successful individual such that all integers less than it are its descendants of some order. Ephemeral, successful, and regeneration integers form stationary and mixing point processes on ℤ.
The nonstationary Erlang-A queue is a fundamental queueing model that is used to describe the dynamic behavior of large-scale multiserver service systems that may experience customer abandonments, such as call centers, hospitals, and urban mobility systems. In this paper we develop novel approximations to all of its transient and steady state moments, the moment generating function, and the cumulant generating function. We also provide precise bounds for the difference of our approximations and the true model. More importantly, we show that our approximations have explicit stochastic representations as shifted Poisson random variables. Moreover, we are also able to show that our approximations and bounds also hold for nonstationary Erlang-B and Erlang-C queueing models under certain stability conditions.
We study negative association for mixed sampled point processes and show that negative association holds for such processes if a random number of their points fulfils the ultra log-concave (ULC) property. We connect the negative association property of point processes with directionally convex dependence ordering, and show some consequences of this property for mixed sampled and determinantal point processes. Some applications illustrate the general theory.
We present the first algorithm that samples maxn≥0{Sn − nα}, where Sn is a mean zero random walk, and nα with $\alpha \in ({1 \over 2},1)$ defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the service time distribution has infinite mean.
We consider a generalised Vervaat perpetuity of the form X = Y1W1 +Y2W1W2 + · · ·, where $W_i \sim {\cal U}^{1/t}$ and (Yi)i≥0 is an independent and identically distributed sequence of random variables independent from (Wi)i≥0. Based on a distributional decomposition technique, we propose a novel method for exactly simulating the generalised Vervaat perpetuity. The general framework relies on the exact simulation of the truncated gamma process, which we develop using a marked renewal representation for its paths. Furthermore, a special case arises when Yi = 1, and X has the generalised Dickman distribution, for which we present an exact simulation algorithm using the marked renewal approach. In particular, this new algorithm is much faster than existing algorithms illustrated in Chi (2012), Cloud and Huber (2017), Devroye and Fawzi (2010), and Fill and Huber (2010), as well as being applicable to the general payments case. Examples and numerical analysis are provided to demonstrate the accuracy and effectiveness of our method.
We consider the so-called frog model with random initial configurations. The dynamics of this model are described as follows. Some particles are randomly assigned to any site of the multidimensional cubic lattice. Initially, only particles at the origin are active and these independently perform simple random walks. The other particles are sleeping and do not move at first. When sleeping particles are hit by an active particle, they become active and start moving in a similar fashion. The aim of this paper is to derive large deviation and concentration bounds for the first passage time at which an active particle reaches a target site.
Inspired by a PDE–ODE system of aggregation developed in the biomathematical literature, we investigate an interacting particle system representing aggregation at the level of individuals. We prove that the empirical density of the individual converges to the solution of the PDE–ODE system.
In large storage systems, files are often coded across several servers to improve reliability and retrieval speed. We study load balancing under the batch sampling routeing scheme for a network of n servers storing a set of files using the maximum distance separable (MDS) code (cf. Li (2016)). Specifically, each file is stored in equally sized pieces across L servers such that any k pieces can reconstruct the original file. When a request for a file is received, the dispatcher routes the job into the k-shortest queues among the L for which the corresponding server contains a piece of the file being requested. We establish a law of large numbers and a central limit theorem as the system becomes large (i.e. n → ∞), for the setting where all interarrival and service times are exponentially distributed. For the central limit theorem, the limit process take values in ℓ2, the space of square summable sequences. Due to the large size of such systems, a direct analysis of the n-server system is frequently intractable. The law of large numbers and diffusion approximations established in this work provide practical tools with which to perform such analysis. The power-of-d routeing scheme, also known as the supermarket model, is a special case of the model considered here.
We study the percolation model on Boltzmann triangulations using a generating function approach. More precisely, we consider a Boltzmann model on the set of finite planar triangulations, together with a percolation configuration (either site-percolation or bond-percolation) on this triangulation. By enumerating triangulations with boundaries according to both the boundary length and the number of vertices/edges on the boundary, we are able to identify a phase transition for the geometry of the origin cluster. For instance, we show that the probability that a percolation interface has length $n$ decays exponentially with $n$ except at a particular value $p_{c}$ of the percolation parameter $p$ for which the decay is polynomial (of order $n^{-10/3}$). Moreover, the probability that the origin cluster has size $n$ decays exponentially if $p<p_{c}$ and polynomially if $p\geqslant p_{c}$.
The critical percolation value is $p_{c}=1/2$ for site percolation, and $p_{c}=(2\sqrt{3}-1)/11$ for bond percolation. These values coincide with critical percolation thresholds for infinite triangulations identified by Angel for site-percolation, and by Angel and Curien for bond-percolation, and we give an independent derivation of these percolation thresholds.
Lastly, we revisit the criticality conditions for random Boltzmann maps, and argue that at $p_{c}$, the percolation clusters conditioned to have size $n$ should converge toward the stable map of parameter $\frac{7}{6}$ introduced by Le Gall and Miermont. This enables us to derive heuristically some new critical exponents.
In this paper we present a set of results relating to the occupation time α(t) of a process X(·). The first set of results concerns exact characterizations of α(t), e.g. in terms of its transform up to an exponentially distributed epoch. In addition, we establish a central limit theorem (entailing that a centered and normalized version of α(t)∕t converges to a zero-mean normal random variable as t→∞) and the tail asymptotics of ℙ(α(t)∕t≥q). We apply our findings to spectrally positive Lévy processes reflected at the infimum and establish various new occupation time results for the corresponding model.
We discuss percolation and random walks in a class of homogeneous ultrametric spaces together with similarities and differences in ultrametric and Euclidean spaces. We briefly outline the role of these models in the study of interacting systems. Several open problems are presented.
We examine a system of interacting random walks with leftward drift on ℤ, which begins with a single active particle at the origin and some distribution of inactive particles on the positive integers. Inactive particles become activated when landed on by other particles, and all particles beginning at the same point possess equal leftward drift. Once activated, the trajectories of distinct particles are independent. This system belongs to a broader class of problems involving interacting random walks on rooted graphs, referred to collectively as the frog model. Additional conditions that we impose on our model include that the number of frogs (i.e. particles) at positive integer points is a sequence of independent random variables which is increasing in terms of the standard stochastic order, and that the sequence of leftward drifts associated with frogs originating at these points is decreasing. Our results include sharp conditions with respect to the sequence of random variables and the sequence of drifts that determine whether the model is transient (meaning the probability infinitely many frogs return to the origin is 0) or nontransient. We consider several, more specific, versions of the model described, and a cleaner, more simplified set of sharp conditions will be established for each case.
The Quicksort process R (Rösler (2018)) can be characterized as the unique endogenous solution of the inhomogeneous stochastic fixed point equation R=D(UR1(1∧t∕U)+𝟭{U<t}(1-U)R2((t-U)∕(1-U))+C(U,t))t on the space 𝒟 of càdlàg functions, such that R(1) has the Quicksort distribution. In this paper we characterize all 𝒟-valued solutions of that equation. Every solution can be represented as the convolution of a solution of the inhomogeneous equation and a general solution of the homogeneous equation (Rüschendorf (2006)). The general solutions of the homogeneous equation are the distributions of Cauchy processes Y with constant drift. Any distribution of R+Y for independent R and Y is a solution of the inhomogeneous equation. Every solution of the inhomogeneous equation is of the form R+Y, where R and Y are independent. The endogenous solutions for the inhomogeneous equation are the shifted Quicksort process distributions. In comparison, the Quicksort distribution is the endogenous solution of the Quicksort fixed point equation unique up to a constant (Rösler (1991)). The general solution can be represented as the convolution of the shifted Quicksort distribution and some symmetric Cauchy distribution (Fill and Janson (2000)), possibly degenerate.
In this paper we consider an infinite system of instantaneously coalescing rate 1 simple symmetric random walks on ℤ2, started from the initial condition with all sites in ℤ2 occupied. Two-dimensional coalescing random walks are a `critical' model of interacting particle systems: unlike coalescence models in dimension three or higher, the fluctuation effects are important for the description of large-time statistics in two dimensions, manifesting themselves through the logarithmic corrections to the `mean field' answers. Yet the fluctuation effects are not as strong as for the one-dimensional coalescence, in which case the fluctuation effects modify the large time statistics at the leading order. Unfortunately, unlike its one-dimensional counterpart, the two-dimensional model is not exactly solvable, which explains a relative scarcity of rigorous analytic answers for the statistics of fluctuations at large times. Our contribution is to find, for any N≥2, the leading asymptotics for the correlation functions ρN(x1,…,xN) as t→∞. This generalises the results for N=1 due to Bramson and Griffeath (1980) and confirms a prediction in the physics literature for N>1. An analogous statement holds for instantaneously annihilating random walks. The key tools are the known asymptotic ρ1(t)∼logt∕πt due to Bramson and Griffeath (1980), and the noncollision probability 𝒑NC(t), that no pair of a finite collection of N two-dimensional simple random walks meets by time t, whose asymptotic 𝒑NC(t)∼c0(logt)-(N2) was found by Cox et al. (2010). We re-derive the asymptotics, and establish new error bounds, both for ρ1(t) and 𝒑NC(t) by proving that these quantities satisfy effective rate equations; that is, approximate differential equations at large times. This approach can be regarded as a generalisation of the Smoluchowski theory of renormalised rate equations to multi-point statistics.
We consider an open problem of obtaining the optimal operational sequence for the 1-out-of-n system with warm standby. Using the virtual age concept and the cumulative exposure model, we show that the components should be activated in accordance with the increasing sequence of their lifetimes. Lifetimes of the components and the system are compared with respect to the stochastic precedence order and its generalization. Only specific cases of this optimal problem were considered in the literature previously.
Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ,μ. For any λ>0 we consider the percolation threshold μc(λ) associated to the parameter μ. Denoting by λc the percolation threshold for the standard Poisson Boolean model with radii r, we show the lower bound μc(λ)≥clog(c∕(λ−λc)) for any λ>λc with c>0 a fixed constant. In particular, there is no phase transition in μ at the critical value of λ, that is, μc(λc) =∞.
Let (Mn,Sn)n≥0 be a Markov random walk with positive recurrent driving chain (Mn)n≥0 on the countable state space 𝒮 with stationary distribution π. Suppose also that lim supn→∞Sn=∞ almost surely, so that the walk has almost-sure finite strictly ascending ladder epochs σn>. Recurrence properties of the ladder chain (Mσn>)n≥0 and a closely related excursion chain are studied. We give a necessary and sufficient condition for the recurrence of (Mσn>)n≥0 and further show that this chain is positive recurrent with stationary distribution π> and 𝔼π>σ1><∞ if and only if an associated Markov random walk (𝑀̂n,𝑆̂n)n≥0, obtained by time reversal and called the dual of (Mn,Sn)n≥0, is positive divergent, i.e. 𝑆̂n→∞ almost surely. Simple expressions for π> are also provided. Our arguments make use of coupling, Palm duality theory, and Wiener‒Hopf factorization for Markov random walks with discrete driving chain.