To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Markov chain X with finite state space {0,…,N} and tridiagonal transition matrix is considered, where transitions from i to i-1 occur with probability (i/N)(1-p(i/N)) and transitions from i to i+1 occur with probability (1-i/N)p(i/N). Here p:[0,1]→[0,1] is a given function. It is shown that if p is continuous with p(x)≤p(1) for all x∈[0,1] then, for each N, a dual process Y to X (with respect to a specific duality function) exists if and only if 1-p is completely monotone with p(0)=0. A probabilistic interpretation of Y in terms of an ancestral process of a mixed multitype Moran model with a random number of types is presented. It is shown that, under weak conditions on p, the process Y, properly time and space scaled, converges to an Ornstein–Uhlenbeck process as N tends to ∞. The asymptotics of the stationary distribution of Y is studied as N tends to ∞. Examples are presented involving selection mechanisms. results.
In this paper we consider a stochastic SIR (susceptible→infective→removed) epidemic model in which individuals may make infectious contacts in two ways, both within ‘households’ (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly sized finite populations. The extension to unequal-sized households is discussed briefly.
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.
Just after the fixation of an advantageous allele in the population (this spread is called a selective sweep), the neutral genes close to the site under selection tend to have the same ancestor as the gene under selection. However, some recombinations may occur during the selective sweep and break the link, which reduces the number of hitchhiking alleles. We consider a large selection coefficient α and extend the results of Etheridge, Pfaffelhuber and Wakolbinger (2006) and the work of Pfaffelhuber and Studeny (2007) about genetic hitchhiking, where the recombination rate scales with α/log α. We first describe the genealogy at an arbitrary number of partially linked neutral loci, with an order of accuracy of in total variation. Then, we use this framework to obtain an approximate distribution for the size of the hitchhiking set at the end of the selective sweep, with the same accuracy.
We analyse an ALOHA-type random multiple-access protocol where users have local interactions. We show that the fluid model of the system workload satisfies a certain differential equation. We obtain a sufficient condition for the stability of this differential equation and deduce from that a sufficient condition for the stability of the protocol. We discuss the necessary condition. Furthermore, for the underlying Markov chain, we estimate the rate of convergence to the stationary distribution. Then we establish an interesting and unexpected result showing that the main diagonal is locally unstable if the input rate is sufficiently small. Finally, we consider two generalisations of the model.
We consider a safety system represented by a monotone (coherent) structure function of n components. The state of the components and the system is only revealed through inspection, which is carried out at intervals of length T. If the inspection shows that the system is in a critical state or has failed, it is overhauled and all components are restored to a good-as-new condition. Costs are associated with tests, system downtime, and repairs. The problem is to find an optimal T minimizing the expected long-run cost per unit of time. The purpose of this paper is to present a formal set-up for this problem and to show how an optimal T can be determined. A special case where the components have three states is given particular attention. It corresponds to a ‘delay time type system’, where the presence of a fault in a component does not lead to an immediate failure—there will be a ‘delay time’ between the occurrence of the fault and the failure of the component.
An occupancy problem with an infinite number of bins and a random probability vector for the locations of the balls is considered. The respective sizes of the bins are related to the split times of a Yule process. The asymptotic behavior of the landscape of the first empty bins, i.e. the set of corresponding indices represented by point processes, is analyzed and convergences in distribution to mixed Poisson processes are established. Additionally, the influence of the random environment, the random probability vector, is analyzed. It is represented by two main components: an independent, identically distributed sequence and a fixed random variable. Each of these components has a specific impact on the qualitative behavior of the stochastic model. It is shown in particular that, for some values of the parameters, some rare events, which are identified, determine the asymptotic behavior of the average values of the number of empty bins in some regions.
In this paper we consider the following problem. An angler buys a fishing ticket that allows him/her to fish for a fixed time. There are two locations to fish at the lake. The fish are caught according to a renewal process, which is different for each fishing location. The angler's success is defined as the difference between the utility function, which is dependent on the size of the fish caught, and the time-dependent cost function. These functions are different for each fishing location. The goal of the angler is to find two optimal stopping times that maximize his/her success: when to change fishing location and when to stop fishing. Dynamic programming methods are used to find these two optimal stopping times and to specify the expected success of the angler at these times.
Consider randomly scattered radio transceivers in ℝd, each of which can transmit signals to all transceivers in a given randomly chosen region about itself. If a signal is retransmitted by every transceiver that receives it, under what circumstances will a signal propagate to a large distance from its starting point? Put more formally, place points {xi} in ℝd according to a Poisson process with intensity 1. Then, independently for each xi, choose a bounded region Axi from some fixed distribution and let be the random directed graph with vertex set whenever xj ∈ xi + Axi. We show that, for any will almost surely have an infinite directed path, provided the expected number of transceivers that can receive a signal directly from xi is at least 1 + η, and the regions xi + Axi do not overlap too much (in a sense that we shall make precise). One example where these conditions hold, and so gives rise to percolation, is in ℝd, with each Axi a ball of volume 1 + η centred at xi, where η → 0 as d → ∞. Another example is in two dimensions, where the Axi are sectors of angle ε γ and area 1 + η, uniformly randomly oriented within a fixed angle (1 + ε)θ. In this case we can let η → 0 as ε → 0 and still obtain percolation. The result is already known for the annulus, i.e. that the critical area tends to 1 as the ratio of the radii tends to 1, while it is known to be false for the square (l∞) annulus. Our results show that it does however hold for the randomly oriented square annulus.
In this paper we obtain some equivalent conditions and sufficient conditions for the local and nonlocal asymptotics of the φ-moments of the overshoot and undershoot of a random walk, where φ is a nonnegative, long-tailed function. By the strong Markov property, it can be shown that the moments of the overshoot and undershoot and the moments of the first ascending ladder height of a random walk satisfy some renewal equations. Therefore, in this paper we first investigate the local and nonlocal asymptotics for the moments of the first ascending ladder height of a random walk, and then give some equivalent conditions and sufficient conditions for the asymptotics of the solutions to some renewal equations. Using the above results, the main results of this paper are obtained.
Given a branching random walk on a graph, we consider two kinds of truncations: either by inhibiting the reproduction outside a subset of vertices or by allowing at most m particles per vertex. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
In this paper we generalize existing results for the steady-state distribution of growth-collapse processes. We begin with a stationary setup with some relatively general growth process and observe that, under certain expected conditions, point- and time-stationary versions of the processes exist as well as a limiting distribution for these processes which is independent of initial conditions and necessarily has the marginal distribution of the stationary version. We then specialize to the cases where an independent and identically distributed (i.i.d.) structure holds and where the growth process is a nondecreasing Lévy process, and in particular linear, and the times between collapses form an i.i.d. sequence. Known results can be seen as special cases, for example, when the inter-collapse times form a Poisson process or when the collapse ratio is deterministic. Finally, we comment on the relation between these processes and shot-noise type processes, and observe that, under certain conditions, the steady-state distribution of one may be directly inferred from the other.
In this paper we consider a class of quasi-birth-and-death processes for which explicit solutions can be obtained for the rate matrix R and the associated matrix G. The probabilistic interpretations of these matrices allow us to describe their elements in terms of paths on the two-dimensional lattice. Then determining explicit expressions for the matrices becomes equivalent to solving a lattice path counting problem, the solution of which is derived using path decomposition, Bernoulli excursions, and hypergeometric functions. A few applications are provided, including classical models for which we obtain some new results.
We propose the following simple stochastic model for phylogenetic trees. New types are born and die according to a birth and death chain. At each birth we associate a fitness to the new type sampled from a fixed distribution. At each death the type with the smallest fitness is killed. We show that if the birth (i.e. mutation) rate is subcritical, we obtain a phylogenetic tree consistent with an influenza tree (few types at any given time and one dominating type lasting a long time). When the birth rate is supercritical, we obtain a phylogenetic tree consistent with an HIV tree (many types at any given time, none lasting very long).
In extreme shock models, only the impact of the current, possibly fatal shock is usually taken into account, whereas in cumulative shock models, the impact of the preceding shocks is accumulated as well. In this paper we combine an extreme shock model with a specific cumulative shock model. It is shown that the proposed setting can also be interpreted as a generalization of the well-known Brown–Proschan model that describes repair actions for repairable systems. For a system subject to a specific process of shocks, we derive the survival probability and the corresponding failure rate function. Some meaningful interpretations and examples are discussed.
We consider a discrete-time risk process driven by proportional reinsurance and an interest rate process. We assume that the interest rate process behaves as a Markov chain. To reduce the risk of ruin, we may reinsure a part or even all of the reserve. Recursive and integral equations for ruin probabilities are given. Generalized Lundberg inequalities for the ruin probabilities are derived given a stationary policy. To illustrate these results, a numerical example is included.
In this paper we give an analytic solution for graphs with n nodes and E = cn log n edges for which the probability of obtaining a given graph G is µn (G) = exp (- β ∑i=1ndi2), where di is the degree of node i. We describe how this model appears in the context of load balancing in communication networks, namely peer-to-peer overlays. We then analyse the degree distribution of such graphs and show that the degrees are concentrated around their mean value. Finally, we derive asymptotic results for the number of edges crossing a graph cut and use these results (i) to compute the graph expansion and conductance, and (ii) to analyse the graph resilience to random failures.
Let X1, X2,… and Y1, Y2,… be two sequences of absolutely continuous, independent and identically distributed (i.i.d.) random variables with equal means E(Xi)=E(Yi), i=1,2,… In this work we provide upper bounds for the total variation and Kolmogorov distances between the distributions of the partial sums ∑i=1nXi and ∑i=1nYi. In the case where the distributions of the Xis and the Yis are compared with respect to the convex order, the proposed upper bounds are further refined. Finally, in order to illustrate the applicability of the results presented, we consider specific examples concerning gamma and normal approximations.
In this paper we consider Lévy processes without negative jumps, reflected at the origin. Feedback information about the level of the Lévy process (‘workload level’) may lead to adaptation of the Lévy exponent. Examples of such models are queueing models in which the service speed or customer arrival rate changes depending on the workload level, and dam models in which the release rate depends on the buffer content. We first consider a class of models where information about the workload level is continuously available. In particular, we consider dam processes with a two-step release rule and M/G/1 queues in which the arrival rate, service speed, and/or jump size distribution may be adapted depending on whether the workload is above or below some level K. Secondly, we consider a class of models in which the workload can only be observed at Poisson instants. At these Poisson instants, the Lévy exponent may be adapted based on the amount of work present. For both classes of models, we determine the steady-state workload distribution.
We consider the problem of allocating k active spares to n components of a series system in order to optimize its lifetime. Under the hypotheses that lifetimes of n components are identically distributed with distribution function F(⋅), lifetimes of k spares are identically distributed with distribution function G(⋅), lifetimes of components and spares are independently distributed, and that ln(G(x))/ln(F(x)) is increasing in x, we show that the strategy of balanced allocation of spares optimizes the failure rate function of the system. Furthermore, under the hypotheses that lifetimes of n components are stochastically ordered, lifetimes of k spares are identically distributed, and that lifetimes of components and spares are independently distributed, we show that the strategy of balanced allocation of spares is superior to the strategy of allocating a larger number of components to stronger components. For coherent systems consisting of n identical components with n identical redundant (spare) components, we compare strategies of component and system redundancies under the criteria of reversed failure rate and likelihood ratio orderings. When spares and original components do not necessarily match in their life distributions, we provide a sufficient condition, on the structure of the coherent system, for the strategy of component redundancy to be superior to the strategy of system redundancy under reversed failure rate ordering. As a consequence, we show that, for r-out-of-n systems, the strategy of component redundancy is superior to the strategy of system redundancy under the criterion of reversed failure rate ordering. When spares and original components match in their life distributions, we provide a necessary and sufficient condition, on the structure of the coherent system, for the strategy of component redundancy to be superior to the strategy of system redundancy under the likelihood ratio ordering. As a consequence, we show that, for r-out-of-n systems, with spares and original components matching in their life distributions, the strategy of component redundancy is superior to the strategy of system redundancy under the likelihood ratio ordering.