To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The process of deterioration of repairable systems with each repair is modeled using converging geometric-type processes. It is proved that the expectation of the number of repairs in each interval of time is infinite. A new regularization procedure is suggested and the corresponding optimization problem is discussed.
We provide sufficient conditions which ensure that the intrinsic martingale in the supercritical branching random walk converges exponentially fast to its limit. We include in particular the case of Galton-Watson processes so that our results can be seen as a generalization of a result given in the classical treatise by Asmussen and Hering (1983). As an auxiliary tool, we prove ultimate versions of two results concerning the exponential renewal measures which may be of interest in themselves and which correct, generalize, and simplify some earlier works.
We consider an M/G/1 queue in which an arriving customer does not enter the system whenever its virtual waiting time, i.e. the amount of work seen upon arrival, is larger than a certain random patience time. We determine the busy period distribution for various choices of the patience time distribution. The main cases under consideration are exponential patience and a discrete patience distribution.
With (Qt)t denoting the stationary workload process in a queue fed by a Lévy input process (Xt)t, this paper focuses on the asymptotics of rare event probabilities of the type P(Q0 > pB, QTB > qB) for given positive numbers p and q, and a positive deterministic function TB. We first identify conditions under which the probability of interest is dominated by the ‘most demanding event’, in the sense that it is asymptotically equivalent to P(Q > max{p, q}B) for large B, where Q denotes the steady-state workload. These conditions essentially reduce to TB being sublinear (i.e.TB/B → 0 as B → ∞). A second condition is derived under which the probability of interest essentially ‘decouples’, in that it is asymptotically equivalent to P(Q > pB)P(Q > qB) for large B. For various models considered in the literature, this ‘decoupling condition’ reduces to requiring that TB is superlinear (i.e. TB / B → ∞ as B → ∞). This is not true for certain ‘heavy-tailed’ cases, for instance, the situations in which the Lévy input process corresponds to an α-stable process, or to a compound Poisson process with regularly varying job sizes, in which the ‘decoupling condition’ reduces to TB / B2 → ∞. For these input processes, we also establish the asymptotics of the probability under consideration for TB increasing superlinearly but subquadratically. We pay special attention to the case TB = RB for some R > 0; for light-tailed input, we derive intuitively appealing asymptotics, intensively relying on sample path large deviations results. The regimes obtained can be interpreted in terms of the most likely paths to overflow.
We study a continuous-time stochastic process on strings made of two types of particle, whose dynamics mimic the behaviour of microtubules in a living cell; namely, the strings evolve via a competition between (local) growth/shrinking as well as (global) hydrolysis processes. We give a complete characterization of the phase diagram of the model, and derive several criteria of the transient and recurrent regimes for the underlying stochastic process.
We consider a system with Poisson arrivals and independent and identically distributed service times, where requests in the system are served according to the state-dependent (Cohen's generalized) processor-sharing discipline, where each request receives a service capacity that depends on the actual number of requests in the system. For this system, we derive expressions as well as tight insensitive upper bounds for the moments of the conditional sojourn time of a request with given required service time. The bounds generalize and extend corresponding results, recently given for the single-server processor-sharing system in Cheung et al. (2006) and for the state-dependent processor-sharing system with exponential service times by the authors (2008). Analogous results hold for the waiting times. Numerical examples for the M/M/m-PS and M/D/m-PS systems illustrate the given bounds.
We consider a stochastic control model driven by a fractional Brownian motion. This model is a formal approximation to a queueing network with an ON-OFF input process. We study stochastic control problems associated with the long-run average cost, the infinite-horizon discounted cost, and the finite-horizon cost. In addition, we find a solution to a constrained minimization problem as an application of our solution to the long-run average cost problem. We also establish Abelian limit relationships among the value functions of the above control problems.
Let f be a probability density function on (a, b) ⊂ (0, ∞), and consider the class Cf of all probability density functions of the form Pf, where P is a polynomial. Assume that if X has its density in Cf then the equilibrium probability density x ↦ P(X > x) / E(X) also belongs to Cf: this happens, for instance, when f(x) = Ce−λx or f(x) = C(b − x)λ−1. We show in the present paper that these two cases are the only possibilities. This surprising result is achieved with an unusual tool in renewal theory, by using ideals of polynomials.
System signatures are useful tools in the study and comparison of coherent systems. In this paper, we define and study a similar concept, called the joint signature, for two coherent systems which share some components. Under an independent and identically distributed assumption on component lifetimes, a pseudo-mixture representation based on this joint signature is obtained for the joint distribution of the lifetimes of both systems. Sufficient conditions are given based on the respective joint signatures of two pairs of systems, each with shared components, to ensure various forms of bivariate stochastic orderings between the joint lifetimes of the two pairs of systems.
We introduce a stochastic process that describes a finite-velocity damped motion on the real line. Differently from the telegraph process, the random times between consecutive velocity changes have exponential distribution with linearly increasing parameters. We obtain the probability law of the motion, which admits a logistic stationary limit in a special case. Various results on the distributions of the maximum of the process and of the first passage time through a constant boundary are also given.
In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.
We investigate the tail behaviour of the steady-state distribution of a stochastic recursion that generalises Lindley's recursion. This recursion arises in queueing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindley's recursion and for alternating service systems.
Consider independent fair coin flips at each site of the lattice ℤd. A translation-equivariant matching rule is a perfect matching of heads to tails that commutes with translations of ℤd and is given by a deterministic function of the coin flips. Let ZΦ be the distance from the origin to its partner, under the translation-equivariant matching rule Φ. Holroyd and Peres (2005) asked, what is the optimal tail behaviour of ZΦ for translation-equivariant perfect matching rules? We prove that, for every d ≥ 2, there exists a translation-equivariant perfect matching rule Φ such that EZΦ2/3-ε < ∞ for every ε > 0.
Conditioning independent and identically distributed bond percolation with retention parameter p on a one-dimensional periodic lattice on the event of having a bi-infinite path from -∞ to ∞ is shown to make sense, and the resulting model exhibits a Markovian structure that facilitates its analysis. Stochastic monotonicity in p turns out to fail in general for this model, but a weaker monotonicity property does hold: the average edge density is increasing in p.
We consider a branching model for a population of dividing cells infected by parasites. Each cell receives parasites by inheritance from its mother cell and independent contamination from outside the cell population. Parasites multiply randomly inside the cell and are shared randomly between the two daughter cells when the cell divides. The law governing the number of parasites which contaminate a given cell depends only on whether the cell is already infected or not. We first determine the asymptotic behavior of branching processes in a random environment with state-dependent immigration, which gives the convergence in distribution of the number of parasites in a cell line. We then derive a law of large numbers for the asymptotic proportions of cells with a given number of parasites. The main tools are branching processes in a random environment and laws of large numbers for a Markov tree.
In the spirit of Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) we consider a Lévy insurance risk model with tax payments of a more general structure than in the aforementioned papers, which was also considered in Albrecher, Borst, Boxma, and Resing (2009). In terms of scale functions, we establish three fundamental identities of interest which have stimulated a large volume of actuarial research in recent years. That is to say, the two-sided exit problem, the net present value of tax paid until ruin, as well as a generalized version of the Gerber–Shiu function. The method we appeal to differs from Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) in that we appeal predominantly to excursion theory.
We consider the operation of an insurer with a large initial surplus x>0. The insurer's surplus process S(t) (with S(0)=x) evolves in the range S(t)≥ 0 as a generalized renewal process with positive mean drift and with jumps at time epochs T1,T2,…. At the time Tη(x) when the process S(t) first becomes negative, the insurer's ruin (in the ‘classical’ sense) occurs, but the insurer can borrow money via a line of credit. After this moment the process S(t) behaves as a solution to a certain stochastic differential equation which, in general, depends on the indebtedness, -S(t). This behavior of S(t) lasts until the time θ(x,y) at which the indebtedness reaches some ‘critical’ level y>0. At this moment the line of credit will be closed and the insurer's absolute ruin occurs with deficit -S(θ(x,y)). We find the asymptotics of the absolute ruin probability and the limiting distributions of η(x), θ(x,y), and -S(θ(x,y)) as x → ∞, assuming that the claim distribution is regularly varying. The second-order approximation to the absolute ruin probability is also obtained. The abovementioned results are obtained by using limiting theorems for the joint distribution of η(x) and -S(Tη(x)).
We consider the two-dimensional version of a drainage network model introduced in Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).
We consider a model for a time series of spatial locations, in which points are placed sequentially at random into an initially empty region of ℝd, and given the current configuration of points, the likelihood at location x for the next particle is proportional to a specified function βk of the current number (k) of points within a specified distance of x. We show that the maximum likelihood estimator of the parameters βk (assumed to be zero for k exceeding some fixed threshold) is consistent in the thermodynamic limit where the number of points grows in proportion to the size of the region.
In an infinite sequence of independent Bernoulli trials with success probabilities pk=a/(a+b +k-1) for k=1,2,3,…, let Nr be the number of r≥2 consecutive successes. Expressions for the first two moments of Nr are derived. Asymptotics of the probability of no occurrence of r consecutive successes for large r are obtained. Using an embedding in a marked Poisson process, it is indicated how the distribution of Nr can be calculated for small r.