We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the number of collisions, Xn, of an exchangeable coalescent with multiple collisions (Λ-coalescent) which starts with n particles and is driven by rates determined by a finite characteristic measure η(dx) = x−2Λ(dx). Via a coupling technique, we derive limiting laws of Xn, using previous results on regenerative compositions derived from stick-breaking partitions of the unit interval. The possible limiting laws of Xn include normal, stable with index 1 ≤ α < 2, and Mittag-Leffler distributions. The results apply, in particular, to the case when η is a beta(a − 2, b) distribution with parameters a > 2 and b > 0. The approach taken allows us to derive asymptotics of three other functionals of the coalescent: the absorption time, the length of an external branch chosen at random from the n external branches, and the number of collision events that occur before the randomly selected external branch coalesces with one of its neighbours.
The representation of the reliability function of the lifetime of a coherent system as a mixture of the reliability function of order statistics associated with the lifetimes of its components is a very useful tool to study the ordering and the limiting behaviour of coherent systems. In this paper, we obtain several representations of the reliability functions of residual lifetimes of used coherent systems under two particular conditions on the status of the components or the system in terms of the reliability functions of residual lifetimes of order statistics.
This paper deals with censoring of infinite-state banded Markov chains. Censoring involves reducing the time spent in states outside a certain set of states to 0 without affecting the number of visits within this set. We show that, if all states are transient, there is, besides the standard censored Markov chain, a nonstandard censored Markov chain which is stochastic. Both the stochastic and the substochastic solutions are found by censoring a sequence of finite transition matrices. If all matrices in the sequence are stochastic, the stochastic solution arises in the limit, whereas the substochastic solution arises if the matrices in the sequence are substochastic. We also show that, if the Markov chain is recurrent, the only solution is the stochastic solution. Censoring is particularly fruitful when applied to quasi-birth-and-death (QBD) processes. It turns out that key matrices in such processes are not unique, a fact that has been observed by several authors. We note that the stochastic solution is important for the analysis of finite queues.
We present two new stochastic volatility models in which option prices for European plain-vanilla options have closed-form expressions. The models are motivated by the well-known SABR model, but use modified dynamics of the underlying asset. The asset process is modelled as a product of functions of two independent stochastic processes: a Cox-Ingersoll-Ross process and a geometric Brownian motion. An application of the models to options written on foreign currencies is studied.
Customers arriving at a queue do not usually see its time-average behavior unless arrivals occur according to a Poisson process. In this article we study how nearly customers see time-average behavior. We give total variation error bounds for comparing the distance between the time- and customer-average distributions of a queueing system in terms of properties of the interarrival distribution. Some refinements are given for special cases and numerical computations are used to demonstrate the performance of the inequalities.
In this paper we present a stability criterion for processor-sharing queues, in which the throughput may depend on the number of customers in the system (such as in the case of interferences between users). Such a system is represented by a point measure-valued stochastic recursion keeping track of the remaining processing times of the customers.
By considering k-out-of-n systems with independent and nonidentically distributed components, we discuss stochastic monotone properties of the residual life and the inactivity time. We then present some stochastic comparisons of two systems based on the residual life and inactivity time.
For exponential open and closed queueing networks, we investigate the internal dependence structure, compare the internal dependence for different networks, and discuss the relation of correlation formulae to the existence of spectral gaps and comparison of asymptotic variances. A central prerequisite for the derived theorems is stochastic monotonicity of the networks. The dependence structure of network processes is described by concordance order with respect to various classes of functions. Different networks with the same first-order characteristics are compared with respect to their second-order properties. If a network is perturbed by changing the routeing in a way which holds the routeing equilibrium fixed, the resulting perturbations of the network processes are evaluated.
We analyze asymptotically a differential-difference equation that arises in a Markov-modulated fluid model. We use singular perturbation methods to analyze the problem with appropriate scalings of the two state variables. In particular, the ray method and asymptotic matching are used.
We study a collector's problem with K renewal arrival processes for different type items, where the objective is to collect complete sets. In particular, we derive the asymptotic distribution of the sequence of interarrival times between set completions.
We study a continuous-time random walk on the d-dimensional lattice, subject to a drift and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is strong enough. We identify the speed in the former case, and the algebraic rate of escape in the latter case. Finally, we discuss the diffusive behavior in the case of zero drift and weak attraction.
In a sequence of independent Bernoulli trials the probability of success in the kth trial is pk = a / (a + b + k − 1). An explicit formula for the binomial moments of the number of two consecutive successes in the first n trials is obtained and some consequences of it are derived.
In this paper a limit theorem is proved that establishes conditions under which the distribution of the difference between the size of the initial event in a random sequence, modeled as a finite point process, and the largest subsequent event approaches a limiting form independent of the size of the initial event. The underlying assumptions are that the sizes of the individual events follow an exponential distribution, that the expected total number of events increases exponentially with the size of the initial event, and that the structure of the sequence approximates that of a Poisson process. Particular cases to which the results apply include sequences of independent and identically distributed exponential variables, and the epidemic-type aftershock (ETAS) branching process model in the subcritical case. In all these cases the form of the limit distribution is shown to be that of a double exponential (type-I extreme value distribution). In sampling from a family of aftershock sequences, with possibly different underlying parameters, the limit distribution is a mixture of such double exponential distributions. The conditions for the simple limit to exist relate to the approximation of the distribution of the number of events by a Poisson distribution. One such condition requires the coefficient of variation (ratio of standard deviation to mean) of the number of events to converge to 0 as the mean increases. The results provide a statistical background to Båth's law in seismology, which asserts that in an aftershock sequence the magnitude of the main shock is commonly around 1.2 units higher than the magnitude of the largest aftershock.
We study the survival properties of inhomogeneous Galton-Watson processes. We determine the so-called branching number (which is the reciprocal of the critical value for percolation) for these random trees (conditioned on being infinite), which turns out to be an almost sure constant. We also shed some light on the way in which the survival probability varies between the generations. When we perform independent percolation on the family tree of an inhomogeneous Galton-Watson process, the result is essentially a family of inhomogeneous Galton-Watson processes, parameterized by the retention probability p. We provide growth rates, uniformly in p, of the percolation clusters, and also show uniform convergence of the survival probability from the nth level along subsequences. These results also establish, as a corollary, the supercritical continuity of the percolation function. Some of our results are generalizations of results in Lyons (1992).
This paper is concerned with the finiteness and large-time behaviour of moments of the overshoot and undershoot of a high level, and of their moment generating functions (MGFs), for a Lévy process which drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process. Results of Klüppelberg, Kyprianou, and Maller (2004) and Doney and Kyprianou (2006) for asymptotic overshoot and undershoot distributions in the class of Lévy processes with convolution equivalent canonical measures are shown to have moment and MGF convergence extensions.
In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities, mixing properties, specification of inhomogeneity, and spatio-temporal extensions.
We consider the M/M/∞ queue with m primary servers and infinitely many secondary servers. All the servers are numbered and ordered. An arriving customer takes the lowest available server. We define the wasted spaces as the difference between the highest numbered occupied server and the total number of occupied servers. Letting ρ = λ0/μ be the ratio of arrival to service rates, we study the probability distribution of the wasted spaces asymptotically for ρ → ∞. We also give some numerical results and the tail behavior for ρ = O(1).
We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.
In this paper we consider a compound Poisson risk model where the insurer earns credit interest at a constant rate if the surplus is positive and pays out debit interest at another constant rate if the surplus is negative. Absolute ruin occurs at the moment when the surplus first drops below a critical value (a negative constant). We study the asymptotic properties of the absolute ruin probability of this model. First we investigate the asymptotic behavior of the absolute ruin probability when the claim size distribution is light tailed. Then we study the case where the common distribution of claim sizes are heavy tailed.
We consider a multiserver queue in the Halfin-Whitt regime: as the number of servers n grows without a bound, the utilization approaches 1 from below at the rate Assuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.