To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A near-maximum is an observation which falls within a distance a of the maximum observation in an i.i.d. sample of size n. The asymptotic behaviour of the number Kn(a) of near-maxima is known for the cases where the right extremity of the population distribution function is finite, and where it is infinite and the right hand tail is exponentially small, or fatter than exponential. This paper completes the picture for thin tails, i.e., tails which decay faster than exponential. Limit theorems are derived and used to find the large-sample behaviour of the sum of near-maxima.
This paper is devoted to the investigation of limit theorems for extremes with random sample size under general dependence-independence conditions for samples and random sample size indexes. Limit theorems of weak convergence type are obtained as well as functional limit theorems for extremal processes with random sample size indexes.
Assume that for a measurable funcion f on (0, ∞) there exist a positive auxiliary function a(t) and some γ ∈ R such that . Then f is said to be of generalized regular variation. In order to control the asymptotic behaviour of certain estimators for distributions in extreme value theory we are led to study regular variation of second order, that is, we assume that exists non-trivially with a second auxiliary function a1(t). We study the possible limit functions in this limit relation (defining generalized regular variation of second order) and their domains of attraction. Furthermore we give the corresponding relation for the inverse function of a monotone f with the stated property. Finally, we present an Abel-Tauber theorem relating these functions and their Laplace transforms.
We study cosine and sine Fourier transforms defined by F(t):= (2/π) and (t):= (2/π), where f is L1-integrable over[0, ∞]. We also assume than F are locally absolutely continuous over [0, ∞). In particular, this is the case if both f(x) and xf(x) are (L1-integrable over [0, ∞). Motivated by the inversion formulas, we consider the partial integras Sν (f, x):= and ν(f, x):= , the modified partial integrals uν (f, x):= sν(f, x) - F(ν)(sin νx)/x and ũν(f, x):= ν(f, x) + (ν) (cos νx)/x, where ν > 0. We give necessary and sufficient conditions for(L1 [0, ∞)-convergence of uν (f) and ũν (f) as well as for the L1 [0, X]-convergence of sν (f) and ν(f) to f as ν← ∞, where 0 < X < ∞ is fixed. On the other hand, in certain cases we conclude that sν(f) and ν(f) cannot belong to (L1 [0,∞). Conequently, it makes no sense to speak of their (L1 [0, ∞)-convergence as ν ← ∞.
As an intermediate tool, we use the Cesàro means of Fourier transforms. Then we prove Tauberian type results and apply Sidon type inequalities in order to obtain Tauberian conditions of Hardy-Karamata kind.
We extend these results to the complex Fourier transform defined by G(t):= , where g is L1- integrable over (−∞, ∞).
Let ((x)) = x −⌊x⌋−1/2 be the swatooth function. If a, b, c and e are positive integeral, then the integral or ((ax)) ((bx)) ((cx)) ((ex)) over the unit interval involves Apolstol's generalized Dedekind sums. By expressing this integral as a lattice-point sum we obtain an elementary method for its evaluation. We also give an elementary proof of the reciprocity law for the third generalized Dedekind sum.
We show that for a Henstock-Kurzweil integrable function f for every ∈ > 0 one can choose an upper semicontinuous gage function δ, used in the definition of the HK-integral if and only if |f| is bounded by a Baire 1 function. This answers a question raised by C. E. Weil.
Some theorems on the existence of continuous real-valued functions on a topological space (for example, insertion, extension, and separation theorems) can be proved without involving uncountable unions of open sets. In particular, it is shown that well-known characterizations of normality (for example the Katětov-Tong insertion theorem, the Tietze extension theorem, Urysohn's lemma) are characterizations of normal σ-rings. Likewise, similar theorems about extremally disconnected spaces are true for σ-rings of a certain type. This σ-ring approach leads to general results on the existence of functions of class α.
Let X(1) ≦ X(2) ≦ ·· ·≦ X(N(t)) be the order statistics of the first N(t) elements from a sequence of independent identically distributed random variables, where {N(t); t ≧ 0} is a renewal counting process independent of the sequence of X's. We give a complete description of the asymptotic distribution of sums made from the top kt extreme values, for any sequence kt such that kt → ∞, kt/t → 0 as t → ∞. We discuss applications to reinsurance policies based on large claims.
Simple necessary and sufficient conditions for a function to be concave in terms of its shifted Laplace transform are given. As an application of this result, we show that the expected local time at zero of a reflected Lévy process with no negative jumps, starting from the origin, is a concave function of the time variable. A special case is the expected cumulative idle time in an M/G/1 queue. An immediate corollary is the concavity of the expected value of the reflected Lévy process itself. A special case is the virtual waiting time in an M/G/1 queue.
This paper considers analogs of results on integral operators studied by Hörmander. Using the sharp function introduced by Fefferman and Stein, we prove weighted norm inequalities on kernel operators which map an Lp space into an Lq space, with q not equal to p. The techniques recover known results about fractional integral operators and apply to multiplier operators which satisfy a generalization of the Hörmander multiplier condition.
Ramsey's theorem implies that every function f:0, 1ℝ isconvex or concave on an infinite set. We show that there is an upper semicontinuous function which is not convex or concave on any uncountable set. We investigate those functions which are not convex on any r element set (r). A typical result: if f is bounded from below and is not convex on any infiniteset then there exists an interval on which the graph of f can be covered by the graphs of countably many strictly concave functions.
A trigonometric series has “small gaps” if the difference of the orders of successive terms is bounded below by a number exceeding one. Wiener, Ingham and others have shown that if a function represented by such a series exhibits a certain behavior on a large enough subinterval I, this will have consequences for the behavior of the function on the whole circle group. Here we show that the assumption that f is in any one of various classes of functions of generalized bounded variation on I implies that the appropriate order condition holds for the magnitude of the Fourier coefficients. A generalized bounded variation condition coupled with a Zygmundtype condition on the modulus of continuity of the restriction of the function to I implies absolute convergence of the Fourier series.
The main aim of this note is the proof of the following
Let −∞ ≤ a > b ≤ ∞ and let A ⊂ (a, b) be a measurable set such that λ((a, b)\A) = 0, where λ denotes Lebesgue measure on ℝ. Let f: A→ℝ be a measurable and midconvex function, i.e.
whenever. Then there exists a convex functionsuch that.
On compact oriented differentiable manifolds, we define a well behaved Riemann type integral which coincides with the Lebesgue integral on nonnegative functions, and such that the exterior derivative of a differentiable (not necessarily continuously) exterior form is always integrable and the Stokes formula holds.
We say that a function has locally small Riemann sums on an interval if for each point x in the interval, and for each positive number ε, all sufficiently fine partitions of intervals lying in neighborhood of x but not containing x have Riemann sums of absolute value less than ε. The main result is then as the title states. We use the generalized Riemann approach to Perron integration, assuming that functions are measurable only to insure that conditions involving the positive and negative parts of the functions are satisfied.
We present a systematic and self-contained exposition of the generalized Riemann integral in a locally compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals. We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with respect to a suitably chosen measure.
A maximality principle on quasi-ordered pseudo-metric spaces is used to obtain a number of Lipschitz attraction results for non-semigroup evolution processes with respect to time-dependent families. As particular cases, a multivalued version of Dieudonné's means value theorem and the Kirk-Ray lipschitzianness test are derived.
The special Denjoy-Bochner integral (the D*B-integral) which are generalisations of Lebesgue-Bochner integral are discussed in [7, 6, 5]. Just as the concept of numerical almost periodicity was extended by Burkill [3] to numerically valued D*- or D-integrable function, we extend the concept of almost periodicity for Banach valued function to Banach valued D*B-integrable function. For this purpose we introduce as in [3] a distance in the space of all D*B-integrable functions with respect to which the D*B-almost periodicity is defined. It is shown that the D*B-almost periodicity shares many of the known properties of the almost periodic Banach valued function [1, 4].
We introduce the notion of functions of bounded proximal variation and the notion of orderly connected topology on the real line. Using these notions, we define in a novel way an integral of Perron type, including virtually all the known integrals of Perron and Denjoy types and admitting mean value theorems and integration by parts and the analog of Marcinkiewicz theorem for the ordinary Perron integral.