We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a computational approximation to the intensity of a Gibbs spatial point process having interactions of any order. Limit theorems from stochastic geometry, and small-sample probabilities estimated once and for all by an extensive simulation study, are combined with scaling properties to form an approximation to the moment generating function of the sufficient statistic under a Poisson process. The approximate intensity is obtained as the solution of a self-consistency equation.
We elucidate the long-term behavior of failure rates for a broad class of frailty models in survival analysis. The class properly includes the proportional hazard frailty model, the additive frailty model, and the accelerated failure time frailty model. A complete asymptotic expansion is derived and compared with the corresponding result for the limiting behavior obtained by Finkelstein and Esaulova (2006a). Several examples are provided to facilitate the comparison and to illustrate both the applicability and the limitations of our approach.
Taylor's law (TL) originated as an empirical pattern in ecology. In many sets of samples of population density, the variance of each sample was approximately proportional to a power of the mean of that sample. In a family of nonnegative random variables, TL asserts that the population variance is proportional to a power of the population mean. TL, sometimes called fluctuation scaling, holds widely in physics, ecology, finance, demography, epidemiology, and other sciences, and characterizes many classical probability distributions and stochastic processes such as branching processes and birth-and-death processes. We demonstrate analytically for the first time that a version of TL holds for a class of distributions with infinite mean. These distributions, a subset of stable laws, and the associated TL differ qualitatively from those of light-tailed distributions. Our results employ and contribute to the methodology of Albrecher and Teugels (2006) and Albrecher et al. (2010). This work opens a new domain of investigation for generalizations of TL.
Multiplicative noise removal is a challenging problem in image restoration. In this paper, by applying Box-Cox transformation, we convert the multiplicative noise removal problem into the additive noise removal problem and the block matching three dimensional (BM3D) method is applied to get the final recovered image. Indeed, BM3D is an effective method to remove additive Gaussian white noise in images. A maximum likelihood method is designed to determine the parameter in the Box-Cox transformation. We also present the unbiased inverse transform for the Box-Cox transformation which is important. Both theoretical analysis and experimental results illustrate clearly that the proposed method can remove multiplicative noise very well especially when multiplicative noise is heavy. The proposed method is superior to the existing methods for multiplicative noise removal in the literature.
The contribution of the theory of scan statistics to the study of many real-life applications has been rapidly expanding during the last decades. The multiple scan statistic, defined on a sequence of n Bernoulli trials, enumerates the number of occurrences of k consecutive trials which contain at least r successes among them (r≤k≤n). In this paper we establish some asymptotic results for the distribution of the multiple scan statistic, as n,k,r→∞ and illustrate their accuracy through a simulation study. Our approach is based on an appropriate combination of compound Poisson approximation and random walk theory.
The (conditional or unconditional) distribution of the continuous scan statistic in a one-dimensional Poisson process may be approximated by that of a discrete analogue via time discretization (to be referred to as the discrete approximation). Using a change of measure argument, we derive the first-order term of the discrete approximation which involves some functionals of the Poisson process. Richardson's extrapolation is then applied to yield a corrected (second-order) approximation. Numerical results are presented to compare various approximations.
We study the asymptotic behaviour of the maximum interpoint distance of random points in a d-dimensional ellipsoid with a unique major axis. Instead of investigating only a fixed number of n points as n tends to ∞, we consider the much more general setting in which the random points are the supports of appropriately defined Poisson processes. Our main result covers the case of uniformly distributed points.
We discuss modelling and simulation of volumetric rainfall in a catchment of the Murray–Darling Basin – an important food production region in Australia that was seriously affected by a recent prolonged drought. Consequently, there has been sustained interest in development of improved water management policies. In order to model accumulated volumetric catchment rainfall over a fixed time period, it is necessary to sum weighted rainfall depths at representative sites within each sub-catchment. Since sub-catchment rainfall may be highly correlated, the use of a Gamma distribution to model rainfall at each site means that catchment rainfall is expressed as a sum of correlated Gamma random variables. We compare four different models and conclude that a joint probability distribution for catchment rainfall constructed by using a copula of maximum entropy is the most effective.
We consider compound geometric approximation for a nonnegative, integer-valued random variable W. The bound we give is straightforward but relies on having a lower bound on the failure rate of W. Applications are presented to M/G/1 queuing systems, for which we state explicit bounds in approximations for the number of customers in the system and the number of customers served during a busy period. Other applications are given to birth–death processes and Poisson processes.
Let $L$ be a countable language. We say that a countable infinite $L$-structure ${\mathcal{M}}$ admits an invariant measure when there is a probability measure on the space of $L$-structures with the same underlying set as ${\mathcal{M}}$ that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of ${\mathcal{M}}$. We show that ${\mathcal{M}}$ admits an invariant measure if and only if it has trivial definable closure, that is, the pointwise stabilizer in $\text{Aut}({\mathcal{M}})$ of an arbitrary finite tuple of ${\mathcal{M}}$ fixes no additional points. When ${\mathcal{M}}$ is a Fraïssé limit in a relational language, this amounts to requiring that the age of ${\mathcal{M}}$ have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.
In this paper we consider general counting processes stopped at a random time T, independent of the process. Provided that T has the decreasing failure rate (DFR) property, we present sufficient conditions on the arrival times so that the number of events occurring before T preserves the DFR property of T. In particular, when the interarrival times are independent, we consider applications concerning the DFR property of the stationary number of customers waiting in queue for specific queueing models.
In this paper we study the speed of infection spread and the survival of the contact process in the random geometric graph G = G(n, rn, f) of n nodes independently distributed in S = [-½, ½]2 according to a certain density f(·). In the first part of the paper we assume that infection spreads from one node to another at unit rate and that infected nodes stay in the same state forever. We provide an explicit lower bound on the speed of infection spread and prove that infection spreads in G with speed at least D1nrn2. In the second part of the paper we consider the contact process ξt on G where infection spreads at rate λ > 0 from one node to another and each node independently recovers at unit rate. We prove that, for every λ > 0, with high probability, the contact process on G survives for an exponentially long time; there exist positive constants c1 and c2 such that, with probability at least 1 - c1 / n4, the contact process starting with all nodes infected survives up to time tn = exp(c2n/logn) for all n.
We study the properties of the multivariate skew normal distribution as an approximation to the distribution of the sum of n independent, identically distributed random vectors. More precisely, we establish conditions ensuring that the uniform distance between the two distribution functions converges to 0 at a rate of n-2/3. The advantage over the corresponding normal approximation is particularly relevant when the summands are skewed and n is small, as illustrated for the special case of exponentially distributed random variables. Applications to some well-known multivariate distributions are also discussed.
Let T be a stopping time associated with a sequence of independent and identically distributed or exchangeable random variables taking values in {0, 1, 2, …, m}, and let ST,i be the stopped sum denoting the number of appearances of outcome 'i' in X1, …, XT, 0 ≤ i ≤ m. In this paper we present results revealing that, if the distribution of T is known, then we can also derive the joint distribution of (T, ST,0, ST,1, …, ST,m). Two applications, which have independent interest, are offered to illustrate the applicability and the usefulness of the main results.
In this paper we provide the basis for new methods of inference for max-stable processes ξ on general spaces that admit a certain incremental representation, which, in important cases, has a much simpler structure than the max-stable process itself. A corresponding peaks-over-threshold approach will incorporate all single events that are extreme in some sense and will therefore rely on a substantially larger amount of data in comparison to estimation procedures based on block maxima. Conditioning a process η in the max-domain of attraction of ξ on being extremal, several convergence results for the increments of η are proved. In a similar way, the shape functions of mixed moving maxima (M3) processes can be extracted from suitably conditioned single events η. Connecting the two approaches, transformation formulae for processes that admit both an incremental and an M3 representation are identified.
As the name suggests, the family of general error distributions has been used to model nonnormal errors in a variety of situations. In this article we show that the asymptotic distribution of linearly normalized partial maxima of random observations from the general error distributions is Gumbel when the parameter of these distributions lies in the interval (0, 1). Our result fills a gap in the literature. We also establish the corresponding density convergence, obtain an asymptotic distribution of the partial maxima under power normalization, and state and prove a strong law. We also study the asymptotic behaviour of observations near the partial maxima and the sum of such observations.
Using a characterizing equation for the beta distribution, Stein's method is applied to obtain bounds of the optimal order for the Wasserstein distance between the distribution of the scaled number of white balls drawn from a Pólya-Eggenberger urn and its limiting beta distribution. The bound is computed by making a direct comparison between characterizing operators of the target and the beta distribution, the former derived by extending Stein's density approach to discrete distributions. In addition, refinements are given to Döbler's (2012) result for the arcsine approximation for the fraction of time a simple random walk of even length spends positive, and so also to the distributions of its last return time to 0 and its first visit to its terminal point, by supplying explicit constants to the present Wasserstein bound and also demonstrating that its rate is of the optimal order.
This paper is concerned with the class of distributions, continuous or discrete, whose shape is monotone of finite integer order t. A characterization is presented as a mixture of a minimum of t
independent uniform distributions. Then, a comparison of t-monotone distributions is made using the s-convex stochastic orders. A link is also pointed out with an alternative approach to monotonicity based on a stationary-excess operator. Finally, the monotonicity property is exploited to reinforce the classical Markov and Lyapunov inequalities. The results are illustrated by several applications to insurance.
We discuss tail behaviors, subexponentiality, and the extreme value distribution of logarithmic skew-normal random variables. With optimal normalized constants, the asymptotic expansion of the distribution of the normalized maximum of logarithmic skew-normal random variables is derived. We show that the convergence rate of the distribution of the normalized maximum to the Gumbel extreme value distribution is proportional to 1/(log n)1/2.