We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$-modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$, T a maximal torus of G and $G_1$ the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
We study the arithmeticity of $\mathbb {C}$-Fuchsian subgroups of some nonarithmetic lattices constructed by Deraux et al. [‘New non-arithmetic complex hyperbolic lattices’, Invent. Math.203 (2016), 681–771]. Our results give an answer to a question raised by Wells [Hybrid Subgroups of Complex Hyperbolic Isometries, Doctoral thesis, Arizona State University, 2019].
Let $\alpha $ be a $C^{\infty }$ volume-preserving action on a closed n-manifold M by a lattice $\Gamma $ in $\mathrm {SL}(n,\mathbb {R})$, $n\ge 3$. Assume that there is an element $\gamma \in \Gamma $ such that $\alpha (\gamma )$ admits a dominated splitting. We prove that the manifold M is diffeomorphic to the torus ${{\mathbb T}^{n}={\mathbb R}^{n}/{\mathbb Z}^{n}}$ and $\alpha $ is smoothly conjugate to an affine action. Anosov diffeomorphisms and partial hyperbolic diffeomorphisms admit a dominated splitting. We obtained a topological global rigidity when $\alpha $ is $C^{1}$. We also prove similar theorems for actions on $2n$-manifolds by lattices in $\textrm {Sp}(2n,{\mathbb R})$ with $n\ge 2$ and $\mathrm {SO}(n,n)$ with $n\ge 5$.
We give cases in which nearby cycles commute with pushforward from sheaves on the moduli stack of shtukas to a product of curves over a finite field. The proof systematically uses the property that taking nearby cycles of Satake sheaves on the Beilinson–Drinfeld Grassmannian with parahoric reduction is a central functor together with a ‘Zorro's lemma’ argument similar to that of Xue [Smoothness of cohomology sheaves of stacks of shtukas, Preprint (2020), arXiv:2012.12833]. As an application, for automorphic forms at the parahoric level, we characterize the image of tame inertia under the Langlands correspondence in terms of two-sided cells.
We present a quantitative isolation property of the lifts of properly immersed geodesic planes in the frame bundle of a geometrically finite hyperbolic $3$-manifold. Our estimates are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic planes, with degree given by the modified critical exponents.
We establish (some directions of) a Ledrappier correspondence between Hölder cocycles, Patterson–Sullivan measures, etc for word-hyperbolic groups with metric-Anosov Mineyev flow. We then study Patterson–Sullivan measures for $\vartheta $-Anosov representations over a local field and show that these are parameterized by the $\vartheta $-critical hypersurface of the representation. We use these Patterson–Sullivan measures to establish a dichotomy concerning directions in the interior of the $\vartheta $-limit cone of the representation in question: if ${\mathsf {u}}$ is such a half-line, then the subset of ${\mathsf {u}}$-conical limit points has either total mass if $|\vartheta |\leq 2$ or zero mass if $|\vartheta |\geq 4.$ The case $|\vartheta |=3$ remains unsettled.
Given a continuous and isometric action of a Polish group G on an adequate Polish topometric space $(X,\tau ,\rho )$ and $x \in X$, we find a necessary and sufficient condition for $\overline {Gx}^{\rho }$ to be co-meagre; we also obtain a criterion that characterizes when such a point exists. This work completes a criterion established in earlier work of the authors.
In this paper, we give an explicit computable algorithm for the Zelevinsky–Aubert duals of irreducible representations of $p$-adic symplectic and odd special orthogonal groups. To do this, we establish explicit formulas for certain derivatives and socles. We also give a combinatorial criterion for the irreducibility of certain parabolically induced representations.
Let ${\mathcal A}$ be a Banach algebra, and let $\varphi $ be a nonzero character on ${\mathcal A}$. For a closed ideal I of ${\mathcal A}$ with $I\not \subseteq \ker \varphi $ such that I has a bounded approximate identity, we show that $\operatorname {WAP}(\mathcal {A})$, the space of weakly almost periodic functionals on ${\mathcal A}$, admits a right (left) invariant $\varphi $-mean if and only if $\operatorname {WAP}(I)$ admits a right (left) invariant $\varphi |_I$-mean. This generalizes a result due to Neufang for the group algebra $L^1(G)$ as an ideal in the measure algebra $M(G)$, for a locally compact group G. Then we apply this result to the quantum group algebra $L^1({\mathbb G})$ of a locally compact quantum group ${\mathbb G}$. Finally, we study the existence of left and right invariant $1$-means on $ \operatorname {WAP}(\mathcal {T}_{\triangleright }({\mathbb G}))$.
Let $\mathbb {V}$ be a polarized variation of Hodge structure over a smooth complex quasi-projective variety $S$. In this paper, we give a complete description of the typical Hodge locus for such variations. We prove that it is either empty or equidistributed with respect to a natural differential form, the pull–push form. In particular, it is always analytically dense when the pull–push form does not vanish. When the weight is two, the Hodge numbers are $(q,p,q)$ and the dimension of $S$ is least $rq$, we prove that the typical locus where the Picard rank is at least $r$ is equidistributed in $S$ with respect to the volume form $c_q^r$, where $c_q$ is the $q$th Chern form of the Hodge bundle. We obtain also several equidistribution results of the typical locus in Shimura varieties: a criterion for the density of the typical Hodge loci of a variety in $\mathcal {A}_g$, equidistribution of certain families of CM points and equidistribution of Hecke translates of curves and surfaces in $\mathcal {A}_g$. These results are proved in the much broader context of dynamics on homogeneous spaces of Lie groups which are of independent interest. The pull–push form appears in this greater generality, we provide several tools to determine it, and we compute it in many examples.
In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some basic results on meandering-hyperbolic actions and give other examples of such actions.
We give an example of an FIID vertex-labeling of ${\mathbb T}_3$ whose marginals are uniform on $[0,1]$, and if we delete the edges between those vertices whose labels are different, then some of the remaining clusters are infinite. We also show that no such process can be finitary.
In this paper, we address the problem of computing the topological entropy of a map $\psi : G \to G$, where G is a Lie group, given by some power $\psi (g) = g^k$, with k a positive integer. When G is abelian, $\psi $ is an endomorphism and its topological entropy is given by $h(\psi ) = \dim (T(G)) \log (k)$, where $T(G)$ is the maximal torus of G, as shown by Patrão [The topological entropy of endomorphisms of Lie groups. Israel J. Math.234 (2019), 55–80]. However, when G is not abelian, $\psi $ is no longer an endomorphism and these previous results cannot be used. Still, $\psi $ has some interesting symmetries, for example, it commutes with the conjugations of G. In this paper, the structure theory of Lie groups is used to show that $h(\psi ) = \dim (T)\log (k)$, where T is a maximal torus of G, generalizing the formula in the abelian case. In particular, the topological entropy of powers on compact Lie groups with discrete center is always positive, in contrast to what happens to endomorphisms of such groups, which always have null entropy.
In [14], Jacquet–Piatetskii-Shapiro–Shalika defined a family of compact open subgroups of p-adic general linear groups indexed by nonnegative integers and established the theory of local newforms for irreducible generic representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new family of compact open subgroups indexed by certain tuples of nonnegative integers. For the proof, we introduce the Rankin–Selberg integrals for Speh representations.
Given an irreducible lattice $\Gamma $ in the product of higher rank simple Lie groups, we prove a co-finiteness result for the $\Gamma $-invariant von Neumann subalgebras of the group von Neumann algebra $\mathcal {L}(\Gamma )$, and for the $\Gamma $-invariant unital $C^*$-subalgebras of the reduced group $C^*$-algebra $C^*_{\mathrm {red}}(\Gamma )$. We use these results to show that: (i) every $\Gamma $-invariant von Neumann subalgebra of $\mathcal {L}(\Gamma )$ is generated by a normal subgroup; and (ii) given a weakly mixing unitary representation $\pi $ of $\Gamma $, every $\Gamma $-equivariant conditional expectation on $C^*_\pi (\Gamma )$ is the canonical conditional expectation onto the $C^*$-subalgebra generated by a normal subgroup.
Let G be a locally compact unimodular group, and let $\phi $ be some function of n variables on G. To such a $\phi $, one can associate a multilinear Fourier multiplier, which acts on some n-fold product of the noncommutative $L_p$-spaces of the group von Neumann algebra. One may also define an associated Schur multiplier, which acts on an n-fold product of Schatten classes $S_p(L_2(G))$. We generalize well-known transference results from the linear case to the multilinear case. In particular, we show that the so-called “multiplicatively bounded $(p_1,\ldots ,p_n)$-norm” of a multilinear Schur multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear Hilbert transform is not bounded as a vector-valued map $L_{p_1}(\mathbb {R}, S_{p_1}) \times L_{p_2}(\mathbb {R}, S_{p_2}) \rightarrow L_{1}(\mathbb {R}, S_{1})$, whenever $p_1$ and $p_2$ are such that $\frac {1}{p_1} + \frac {1}{p_2} = 1$. A similar result holds for certain Calderón–Zygmund-type operators. This is in contrast to the nonvector-valued Euclidean case.
For a given inverse semigroup action on a topological space, one can associate an étale groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the Cartan intermediate subalgebras of a groupoid C*-algebra.
We extend the Burger–Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of Burger–Mozes universal groups acting on the regular tree $T_{d}$ of degree $d\in \mathbb {N}_{\ge 3}$. Three applications are given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of $\operatorname {\mathrm {Aut}}(T_{d})$ may feature in terms of the group’s local action. In doing so, we explicitly construct closed, nondiscrete, compactly generated subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ with nontrivial quasicentre, and see that the Burger–Mozes theory does not extend further to the transitive case. We then characterize the $(P_{k})$-closures of locally transitive subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ containing an involutive inversion, and thereby partially answer two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions on finite subtrees’, J. Group Theory18(2) (2015), 235–261]. Finally, we offer a new view on the Weiss conjecture.
Hardin and Taylor proved that any function on the reals—even a nowhere continuous one—can be correctly predicted, based solely on its past behavior, at almost every point in time. They showed that one could even arrange for the predictors to be robust with respect to simple time shifts, and asked whether they could be robust with respect to other, more complicated time distortions. This question was partially answered by Bajpai and Velleman, who provided upper and lower frontiers (in the subgroup lattice of $\mathrm{Homeo}^+(\mathbb {R})$) on how robust a predictor can possibly be. We improve both frontiers, some of which reduce ultimately to consequences of Hölder’s Theorem (that every Archimedean group is abelian).