To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article presents a system architecture and a set of interfaces that can build scalable information systems capable of large city modeling based on dynamic geospatial knowledge graphs to avoid pitfalls of Web 2.0 applications while blending artificial and human intelligence during the knowledge enhancement processes. We designed and developed a GeoSpatial Processor, an SQL2SPARQL Transformer, and a geospatial tiles ordering tasks and integrated them into a City Export Agent to visualize and interact with city models on an augmented 3D web client. We designed a Thematic Surface Discovery Agent to automatically upgrade the model’s level of detail to interact with thematic parts of city objects by other agents. We developed a City Information Agent to help retrieve contextual information, provide data concerning city regulations, and work with a City Energy Analyst Agent that automatically estimates the energy demands for city model members. We designed a Distance Agent to track the interactions with the model members on the web, calculate distances between objects of interest, and add new knowledge to the Cities Knowledge Graph. The logical foundations and CityGML-based conceptual schema used to describe cities in terms of the OntoCityGML ontology, together with the system of intelligent autonomous agents based on the J-Park Simulator Agent Framework, make such systems capable of assessing and maintaining ground truths with certainty. This new era of GeoWeb 2.5 systems lowers the risk of deliberate misinformation within geography web systems used for modeling critical infrastructures.
We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)^q+q$ vertices; subsequently, Lovász refined the argument to show that graphs with $4(2q+3)^8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $q\ge 2$ parts is forced by homomorphism densities of graphs with at most $4q^2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.
Turkeys are important sources of antimicrobial-resistant Campylobacter. A total of 1063 isolates were obtained from 293 turkey flocks across Canada between 2016 and 2021 to evaluate their antimicrobial resistance (AMR) prevalence, patterns, distribution, and association with antimicrobial use (AMU). A high proportion of C. jejuni and C. coli isolates were resistant to tetracyclines and fluoroquinolones, despite the very low use of these drugs. C. jejuni isolates had a higher probability of being resistant to tetracyclines than C. coli isolates. The chance of C. jejuni isolates being resistant to fluoroquinolones, macrolides, and lincosamides was lower compared to C. coli. Isolates from the western region had a higher probability of being resistant to fluoroquinolones than isolates from Ontario. Isolates from Ontario had higher odds of being resistant to tetracyclines than isolates from Quebec. No associations were noted between the resistance and use of the same antimicrobial, but the use of certain antimicrobial classes may have played a role in the maintenance of resistance in Campylobacter (fluoroquinolone resistance – bacitracin and streptogramin use, tetracycline resistance – flavophospholipids and streptogramins use, macrolide resistance – flavophospholipid use). Low-level multidrug-resistant Campylobacter was observed indicating a stable AMR in turkeys. This study provided insights aiding future AMU and AMR surveillance.
Climate risks are systemic risks and may be clustered according to so-called volatilities, uncertainties, complexities, and ambiguities (VUCA) criteria. We analyze climate risk in the VUCA concept and provide a framework that allows to interpret systemic risks as model risk. As climate risks are characterized by deep uncertainties (unknown unknowns), we argue that precautionary and resilient principles should be applied instead of capital-based risk measures (reasonable for known unknows). A prominent example of the proposed principles is the precommitment approach (PCA). Within the PCA, subjective probabilities allow to discriminate between tolerable risks and acceptable ones. The amount of determined solvency capital for acceptable risks and estimations of model risk may be aggregated by means of a multiplier approach. This framework is in line with the three-pillar approach of Solvency II, especially with the recovery and resolution plan. Furthermore, it fits smoothly to a hybrid approach of micro- and macroprudential supervision.
This paper considers a model with general regressors and unobservable common factors. An estimator based on iterated principal component analysis is proposed, which is shown to be not only asymptotically normal, but under certain conditions also free of the otherwise so common asymptotic incidental parameters bias. Interestingly, the conditions required to achieve unbiasedness become weaker the stronger the trends in the factors, and if the trending is strong enough, unbiasedness comes at no cost at all. The approach does not require any knowledge of how many factors there are, or whether they are deterministic or stochastic. The order of integration of the factors is also treated as unknown, as is the order of integration of the regressors, which means that there is no need to pre-test for unit roots, or to decide on which deterministic terms to include in the model.
Following the end of universal testing in the UK, hospital admissions are a key measure of COVID-19 pandemic pressure. Understanding leading indicators of admissions at the National Health Service (NHS) Trust, regional and national geographies help health services plan for ongoing pressures. We explored the spatio-temporal relationships of leading indicators of hospitalisations across SARS-CoV-2 waves in England. This analysis includes an evaluation of internet search volumes from Google Trends, NHS triage calls and online queries, the NHS COVID-19 app, lateral flow devices (LFDs), and the ZOE app. Data sources were analysed for their feasibility as leading indicators using Granger causality, cross-correlation, and dynamic time warping at fine spatial scales. Google Trends and NHS triages consistently temporally led admissions in most locations, with lead times ranging from 5 to 20 days, whereas an inconsistent relationship was found for the ZOE app, NHS COVID-19 app, and LFD testing, which diminished with spatial resolution, showing cross-correlation of leads between –7 and 7 days. The results indicate that novel surveillance sources can be used effectively to understand the expected healthcare burden within hospital administrative areas though the temporal and spatial heterogeneity of these relationships is a key determinant of their operational public health utility.
This paper focuses on modeling surrender time for policyholders in the context of life insurance. In this setup, a large lapse rate at the first months of a contract is often observed, with a decrease in this rate after some months. The modeling of the time to cancelation must account for this specific behavior. Another stylized fact is that policies which are not canceled in the study period are considered censored. To account for both censoring and heterogeneous lapse rates, this work assumes a Bayesian survival model with a mixture of regressions. The inference is based on data augmentation allowing for fast computations even for datasets of over millions of clients. Moreover, frequentist point estimation based on Expectation–Maximization algorithm is also presented. An illustrative example emulates a typical behavior for life insurance contracts, and a simulated study investigates the properties of the proposed model. A case study is considered and illustrates the flexibility of our proposed model allowing different specifications of mixture components. In particular, the observed censoring in the insurance context might be up to $50\%$ of the data, which is very unusual for survival models in other fields such as epidemiology. This aspect is exploited in our simulated study.
A target benefit plan (TBP) is a collective defined contribution (DC) plan that is growing in popularity in Canada. Similar to DC plans, TBPs have fixed contribution rates, but they also implement pooling of longevity and investment risk. In this paper, we formulate a multi-period model that incorporates two sources of risk – asset risk and labor income risk for active members. We present an optimal investment and retirement benefits schedule for TBP members with a fixed contribution rate. Using Australian data from 1965 to 2018, we evaluate the performance of the optimal TBP scheme and compare it to the optimal DC scheme. By adopting the benefit–investment strategy derived in this paper, we demonstrate the stability of benefit distribution over time for a TBP scheme in this stochastic formulation. To outperform the DC scheme’s benefit payment, careful consideration shall be given to the benefit target in the TBP scheme. A high target may not be achievable, while a low target can impede the accumulation momentum of the fund’s wealth in its early stages. Moreover, a TBP fund’s investment strategy is primarily influenced by the wealth target, with more aggressive investments in risky assets as the wealth target increases. This analysis may shed light on the possible improvements to retirement planning in Australia. Although the results are sensitive to the choice of model parameters, overall, the proposed TBP promotes system stability in various scenarios.
Haemolytic uraemic syndrome (HUS) caused by infection with Shiga toxin-producing Escherichia coli (STEC) is a relatively rare but potentially fatal multisystem syndrome clinically characterised by acute kidney injury. This study aimed to provide robust estimates of paediatric HUS incidence in England, Wales, Northern Ireland, and the Republic of Ireland by using data linkage and case reconciliation with existing surveillance systems, and to describe the characteristics of the condition. Between 2011 and 2014, 288 HUS patients were included in the study, of which 256 (89.5%) were diagnosed as typical HUS. The crude incidence of paediatric typical HUS was 0.78 per 100,000 person-years, although this varied by country, age, gender, and ethnicity. The majority of typical HUS cases were 1 to 4 years old (53.7%) and female (54.0%). Clinical symptoms included diarrhoea (96.5%) and/or bloody diarrhoea (71.9%), abdominal pain (68.4%), and fever (41.4%). Where STEC was isolated (59.3%), 92.8% of strains were STEC O157 and 7.2% were STEC O26. Comparison of the HUS case ascertainment to existing STEC surveillance data indicated an additional 166 HUS cases were captured during this study, highlighting the limitations of the current surveillance system for STEC for monitoring the clinical burden of STEC and capturing HUS cases.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
In this paper, we propose new Metropolis–Hastings and simulated annealing algorithms on a finite state space via modifying the energy landscape. The core idea of landscape modification rests on introducing a parameter c, such that the landscape is modified once the algorithm is above this threshold parameter to encourage exploration, while the original landscape is utilized when the algorithm is below the threshold for exploitation purposes. We illustrate the power and benefits of landscape modification by investigating its effect on the classical Curie–Weiss model with Glauber dynamics and external magnetic field in the subcritical regime. This leads to a landscape-modified mean-field equation, and with appropriate choice of c the free energy landscape can be transformed from a double-well into a single-well landscape, while the location of the global minimum is preserved on the modified landscape. Consequently, running algorithms on the modified landscape can improve the convergence to the ground state in the Curie–Weiss model. In the setting of simulated annealing, we demonstrate that landscape modification can yield improved or even subexponential mean tunnelling time between global minima in the low-temperature regime by appropriate choice of c, and we give a convergence guarantee using an improved logarithmic cooling schedule with reduced critical height. We also discuss connections between landscape modification and other acceleration techniques, such as Catoni’s energy transformation algorithm, preconditioning, importance sampling, and quantum annealing. The technique developed in this paper is not limited to simulated annealing, but is broadly applicable to any difference-based discrete optimization algorithm by a change of landscape.
This study aimed to summarise the findings of the studies assessing the effectiveness of ultraviolet C (UV-C) room disinfection in reducing the incidence rate of healthcare-associated multi-drug-resistant organism (MDRO) infections. A systematic screening was conducted using PubMed, EMBASE, and Scopus for randomised controlled trials (RCTs), quasi-experimental studies, and before–after studies, which assessed the efficacy of the UV-C disinfectant system in reducing the incidence of MDRO infections. A random-effects model was used for the analysis. Effect sizes were described as incidence rate ratio (IRR) with 95% confidence intervals (CI). Nine studies were included, all of which were conducted in the USA. No statistically significant reduction in Clostridioides difficile (CD) (IRR: 0.90, 95% CI; 0.62–1.32) and vancomycin-resistant enterococcal (VRE) infection rates (IRR 0.72, 95% CI; 0.38–1.37) was observed with the use of UV-C, but the risk of Gram-negative rod infection was reduced (IRR 0.82, 95% CI; 0.68–0.99).
Coronaviruses of the human variety have been the culprit of global epidemics of varying levels of lethality, including COVID-19, which has impacted more than 200 countries and resulted in 5.7 million fatalities as of May 2022. Effective clinical management necessitates the allocation of sufficient resources and the employment of appropriately skilled personnel. The elderly population and individuals with diabetes are at increased risk of more severe manifestations of COVID-19. Countries with a higher gross domestic product (GDP) typically exhibit superior health outcomes and reduced mortality rates. Here, we suggest a predictive model for the density of medical doctors and nursing personnel for 134 countries using a support vector machine (SVM). The model was trained in 107 countries and tested in 27, with promising results shown by the kappa statistics and ROC analysis. The SVM model used for predictions showed promising results with a high level of agreement between actual and predicted cluster values.