To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Mediterranean Region registers an increasing prevalence of obesity. The region lacks a diet screener to assess obesogenic nutrients. This study aimed to evaluate the reproducibility and validity of the Modified Mediterranean Prime Screen (MMPS) in estimating obesogenic nutrients’ intake among women of reproductive age, as compared with a culturally validated Food Frequency Questionnaire (FFQ), in Lebanon. We developed the MMPS consisting of thirty-two food/beverage items specific to the Lebanese Mediterranean culture. The MMPS and FFQ were administered in two visits (2 weeks–6 months apart), face to face and via telephone during the coronavirus disease 2019 pandemic. The reproducibility and validity of the MMPS were assessed using intraclass correlation coefficients (ICC) and Pearson’s correlations, respectively. The study included 143 women, aged 31·5 (sd 4·6) years, BMI 24·2 (sd 4·0) kg/m2, 87 % with university education and 91 % food secure. The reproducibility of the MMPS was moderate for energy and all assessed nutrients except for SFA (ICC = 0·428). The agreement of the MMPS with the reference FFQ was adequate for energy and obesogenic nutrients. Yet, the Pearson correlations for energy-adjusted nutrient intake were low for trans-fatty acids (0·294) and PUFA (0·377). The MMPS can be a time-efficient tool for dietary assessment of energy and many obesogenic nutrients. Future studies should validate the MMPS across the lifespan and re-evaluate it after updating the fatty acid profiles in the culturally specific food composition tables.
The objective of this prospective observational study was to assess the growth and body composition of term small-for-gestational-age (SGA) infants from birth to 6 months and evaluate the effect of catch-up growth (CUG) on body composition. Term SGA newborns were recruited at birth. Anthropometry and body composition were evaluated at 3 days, 6, 10 and 14 weeks, and 6 months. Fat and fat-free mass (FM and FFM) were compared between infants with and without CUG (increase in weight Z-score by > 0·67) by air displacement plethysmography. Factors that could affect body composition and CUG, including parents’ BMI and stature, infants’ birth weight, sex and feeding, were evaluated. A total of 143 SGA newborns (sixty-six boys) with birth weight of 2336 (sd 214) g were enrolled; 109 were followed up till 6 months. Median weight Z-score increased from −2·3 at birth to −1·3 at 6 months, with 51·9 % of infants showing CUG. Infants with CUG had higher FM (1796 (sd 491) g v. 1196 (sd 474) g, P < 0·001) but similar FFM (4969 (sd 508) g v. 4870 (sd 622) g, P = 0·380), and consequently higher FM percentage (FM%) (26·5 (sd 5·8) v. 19·7 (sd 6·9), P < 0·001), compared with those without CUG. Lower birth weight, exclusive breast-feeding and higher parental stature were positively associated with CUG. In conclusion, CUG in term SGA infants in the first 6 months of life was almost entirely attributable to greater gain in FM. Follow-up of this cohort will provide insight into the long-term effect of disproportionate gain in FM in early infancy in SGA babies.
In this paper, direct numerical simulations in hypersonic turbulent boundary layers over a $24^{\circ }$ compression ramp at Mach 6.0 are performed. The wall skin friction and its spanwise non-homogeneity in the interaction region are analysed via the spectral analysis and drag decomposition method. On the compression ramp, the premultiplied spanwise energy spectrum of wall shear stress $\tau _{w}$ reveals two energetic spanwise length scales. One occurs in the region of $x/\delta _{ref}=0\unicode{x2013}3$ ($x=0$ lies in the compression corner; $\delta _{ref}$ is the boundary layer thickness upstream of the interaction region) and is consistent with that of the large-scale streamwise vortices, indicating that the fluctuation intensity of $\tau _{w}$ is associated with the Görtler-type structures. The other one is observed downstream of $x/\delta _{ref}=3.0$ and corresponds to the regenerated elongated streaky structures. The fluctuation intensity of $\tau _{w}$ peaks at $x/\delta _{ref}=3.0$, where both the above energetic length scales are observed. The drag decomposition method proposed by Li et al. (J. Fluid Mech., vol. 875, 2019, pp. 101–123) is extended to include the effects of spanwise non-homogeneity so that it can be used in the interaction region where the mean flow field and the mean skin friction $C_f$ exhibit an obvious spanwise heterogeneity. The results reveal that, in the upstream turbulent boundary layer, the drag contribution arising from the spanwise heterogeneity can be neglected, while this value on the compression ramp is up to 20.7 % of $C_f$, resulting from the Görtler-type vortices. With the aid of the drag decomposition method, it is found that the main flow features that contribute positively to the amplification of $C_f$ and its rapid increase on the compression ramp includes: the density increase across the shock, the high mean shear stress and turbulence amplification around the detached shear layer and the Favre-averaged downward velocity towards the ramp wall. Compared with the spanwise-averaged value, $C_f$ and its components at the spanwise station where the downwash and upwash of the Görtler-type vortices occur reveal a spanwise variation exceeding 10 %.
This article argues that live cattle futures, launched in 1964 in Chicago, were revolutionary for professional economics, the derivatives industry, and the beef cattle industry because cattle were the first successful “non-storable” derivatives. Since the late nineteenth century, the ability of derivatives to provide financial services to risk-averse farmers rested on the assumption that futures were interchangeable with physical commodities in storage. Live cattle futures upset theories and norms, which enabled experiments in increasingly abstract forms of speculation and tremendous growth in the derivatives industry. Economists, exchange leaders, and commodity producers cooperated to make live cattle futures work, but they all understood and felt their impacts differently. The article applies market performativity theory to better understand how financial instruments and markets became first less and later more physically abstract over time. The article reveals that the changing materiality of derivatives also led to changes in the social purpose of speculative finance. Sources include published economics articles, conference proceedings, congressional hearings, historical newspapers, and archival records from the derivatives and cattle industries.
Turbulent entrainment is a process by which a locally turbulent region draws in an outer irrotational fluid. A large number of small-scale vortices and shear layers exist near the turbulent/non-turbulent interface; these features influence the local entrainment process. Direct numerical simulations of a turbulent front evolving into a quiescent flow without mean shear show that the entrainment rate is amplified by triggering the instability of small-scale shear layers via weak perturbations with a wavelength matching that of the unstable mode of the shear layers. Imposing artificial perturbations with a length scale approximately 30 times the Kolmogorov scale leads to the rapid collapse of small-scale shear layers due to instability, generating vortices near the turbulent/non-turbulent interface. Amplification of the entrainment rate is linked to the enlarged area and increased propagation velocity of the interface. The impact of perturbations on the entrainment rate becomes most pronounced when the flow evolves over approximately 7 times the Kolmogorov time scale, after which their influence diminishes over time. Additionally, the increase in entrainment rate is dictated by the ratio of the perturbation amplitude to the Kolmogorov velocity scale. The entrainment enhancement process is governed by Kolmogorov scales, suggesting that even weak perturbations can amplify the entrainment rate in high Reynolds number flows.
For closed subgroups L and R of a compact Lie group G, a left L-space X, and an L-equivariant continuous map $A:X\to G/R$, we introduce the twisted action of the equivariant cohomology $H_R^{\bullet }(\mathrm {pt},\Bbbk )$ on the equivariant cohomology $H_L^{\bullet }(X,\Bbbk )$. Considering this action as a right action, $H_L^{\bullet }(X,\Bbbk )$ becomes a bimodule together with the canonical left action of $H_L^{\bullet }(\mathrm {pt},\Bbbk )$. Using this bimodule structure, we prove an equivariant version of the Künneth isomorphism. We apply this result to the computation of the equivariant cohomologies of Bott–Samelson varieties and to a geometric construction of the bimodule morphisms between them.
Is the working capital channel big, and does it vary across industries? To answer this question, I estimate a dynamic stochastic macro-finance model using firm-level data. In aggregate, I find a partial channel —about three-fourths of firms’ labor bill are borrowed. However, the strength of this channel varies across industries, reaching as low as one-half for retail firms and as high as one for agriculture and construction. This provides evidence that monetary policy could have varying effects across industries through the working capital channel.
This article reports on the archaeological survey of a (military) fort and (trade) caravanserai at Khirbet al-Khalde in southern Jordan, along the eastern Roman frontier. The results reveal the site's resilience and destruction up until the present day and the need for monitoring of threats to its preservation.
Hegel's Philosophy of History can be characterized as Eurocentric and one finds in it many problematic passages, and even racist statements, as well as a legitimization of colonialism which is presented as a means of education (Bildung). Nevertheless, this article argues that it is possible to reject such judgements and at the same time hold on to the basic intention of Hegel's theories of freedom and Bildung. While the concept of freedom as self-determination is certainly applied in a Eurocentric manner by Hegel in his Philosophy of History, this concept is not Eurocentric at its core. To understand this ‘core’, one has to go back to Hegel's logic of the concept, which finally leads me to a concept of ‘concrete Bildung’. The struggles for self-determination of the colonized peoples must be understood in terms of a further development of the realization of the concept of freedom. If one wants to think Hegel's Philosophy of History meaningfully beyond Hegel's own time, one is inevitably led to the necessity of a liberation of the colonized, for there is a need for a further extension of the consciousness of freedom that actually is inclusive. This demand is contained in Hegel's thought itself, but it still remains abstract with him and must therefore be developed beyond him.
We present a linearity theorem for a proof language of intuitionistic multiplicative additive linear logic, incorporating addition and scalar multiplication. The proofs in this language are linear in the algebraic sense. This work is part of a broader research program aiming to define a logic with a proof language that forms a quantum programming language.
The Weng'an Biota from the Ediacaran Doushantuo Formation in Guizhou Province, southwestern China, is known for its three-dimensionally phosphatized acritarchs, multicellular algae, and embryo-like animal fossils. Among these diverse microfossils, acanthomorphic acritarchs have played a significant role in the biostratigraphic subdivision and correlation of the lower-middle Ediacaran System. However, most previous studies on the biostratigraphy of the Doushantuo Formation in the Weng'an area have focused on large acanthomorphic acritarchs (LAAs, vesicle diameter >200 μm), whereas the smaller acanthomorphic acritarchs (SAAs, vesicle diameter <100 μm) from the Weng'an Biota have been largely overlooked. In this study, we examined >500 thin sections and discovered a large number of well-preserved, small (<100 μm) and medium-sized acanthomorphic acritarchs (MAAs, vesicle diameter ranging 100–200 μm). In total, we have identified SAAs in four genera and six species (Tanarium conoideum Kolosova, 1991, emend. Moczydłowska et al., 1993; Tanarium elegans Liu et al., 2014; Mengeosphaera membranifera Shang, Liu, and Moczydłowska, 2019; Mengeosphaera minima Liu et al., 2014; Estrella recta Liu and Moczydłowska, 2019; Variomargosphaeridium gracile Xiao et al., 2014), as well as two types of MAAs (Tanarium tuberosum Moczydłowska, Vidal, and Rudavskaya, 1993, emend. Moczydłowska, 2015; Weissiella cf. W. grandistella Vorob'eva, Sergeev, and Knoll, 2009, emend. Liu and Moczydłowska, 2019). This updated acritarch assemblage of the Weng'an Biota is valuable for correlating the Ediacaran Doushantuo Formation between the Weng'an and Yangtze Gorges areas. It also serves as a tool to test the proposed acritarch biozones in Ediacaran formations of South China and other localities, including Australia, Siberia, and the East European Platform.
Particulate flows at moderate particle Reynolds numbers are important in critical engineering and geological applications. This experimental study explores neutrally buoyant suspensions in an outer-rotating coaxial rheometer for solid fractions, $\phi$, from 0.1 to 0.5, and particle Reynolds number, $Re$, from 0.5 to 800, covering laminar, transitional and turbulent regimes; $Re$ is defined in terms of the square of the particle diameter and the shear rate. For $0.1 < \phi < 0.4$ and $0.5 < Re <10$, the direct torque measurements normalised by the laminar flow torque, $M/M_{lam}$, are independent of $Re$, but depend on $\phi$. For the same range of $\phi$ and for $10< Re<100$, the normalised torques depend on both $\phi$ and $Re$, and show an increasing dependence on $Re$. As $Re$ increases, the flow transitions to turbulence. Small particles delay the turbulent transition for $\phi \leqslant 0.3$, while large particles augment the transition. A modified Reynolds number, $Re^\prime$, that depends linearly on the particle diameter and the maximum velocity, $U_{o}$, is introduced for both laminar and turbulent flows and shows a better correlation of the results as compared with $Re$. For $\phi = 50\,\%$, the normalised torque minus the torque at zero rotational speed is nearly independent of $Re^\prime$. Rheological models based on $Re^\prime$ and the Krieger–Dougherty relative viscosity are proposed in the laminar regime for $10< Re^\prime <500$; in the turbulent regime, a correlation is proposed in terms of $Re^\prime$ and $\phi$ for $1000< Re^\prime < 6000$.
We investigate by direct numerical simulations the fluid–solid interaction of non-dilute suspensions of spherical particles moving in triperiodic turbulence, at the relatively large Reynolds number of $Re_\lambda \approx 400$. The solid-to-fluid density ratio is varied between $1.3$ and $100$, the particle diameter $D$ is in the range $16 \le D/\eta \le 123$ ($\eta$ is the Kolmogorov scale) and the volume fraction of the suspension is $0.079$. Turbulence is sustained using the Arnold–Beltrami–Childress cellular-flow forcing. The influence of the solid phase on the largest and energetic scales of the flow changes with the size and density of the particles. Light and large particles modulate all scales in an isotropic way, while heavier and smaller particles modulate the largest scales of the flow towards an anisotropic state. Smaller scales are isotropic and homogeneous for all cases. The mechanism driving the energy transfer across scales changes with the size and the density of the particles. For large and light particles the energy transfer is only marginally influenced by the fluid–solid interaction. For small and heavy particles, instead, the classical energy cascade is subdominant at all scales, and the energy transfer is essentially driven by the fluid–solid coupling. The influence of the solid phase on the flow intermittency is also discussed. Besides, the collective motion of the particles and their preferential location in relation to properties of the carrier flow are analysed. The solid phase exhibits moderate clustering; for large particles the level of clustering decreases with their density, while for small particles it is maximum for intermediate values.
The Cyathocotylidae Mühling, 1898 is a family of primitive diplostomoid trematodes important for understanding the evolution of the superfamily Diplostomoidea. However, cyathocotylids remain poorly studied with the use of molecular techniques. In this study we sequenced the 5.8S + ITS2 region, 28S rRNA, and cox1 genes of two cyathocotylid species and obtained new morphological data on them. We propose Georduboisia nom. nov. instead of the preoccupied name Duboisia Szidat, 1936 (junior homonym of Duboisia Stremme, 1911). Adults of Georduboisia cf. teganuma (Ishii, 1935) and Paracoenogonimus ovatus Katsurada, 1914 were collected from fish-eating birds in the south of the European part of Russia. Georduboisia cf. teganuma was very similar to G.teganuma but differed from it in the shape of the testes. The 28S rRNA gene dataset provided the best-resolved phylogeny of the Cyathocotylidae to date. In the phylogram based on partial sequences of this gene, P. ovatus was close to members of Holostephanoides Dubois, 1983, Neogogatea Chandler & Rausch, 1947 and Gogatea Szidat, 1936. Georduboisia cf. teganuma clustered with members of Cyathocotyle Mühling, 1896 and Holostephanus Szidat, 1936. Phylogenetic analysis based on the 5.8S + ITS2 dataset showed that adults of P. ovatus examined in our study were conspecific with the metacercariae from the musculature of fish collected in Hungary and Italy. It also revealed probable misidentifications of larvae and adults of cyathocotylids whose sequences are deposited in GenBank NCBI.