To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.
Geophagy is the intentional consumption of earth. Although widely documented among vulnerable populations, including children and pregnant women, the causes and consequences of geophagy remain poorly understood. Relevant literature was, therefore, reviewed to describe geophagy across species, geographies, life stages, and disease states. After a brief consideration of hypothesized etiologies, the potential harmful and beneficial consequences of geophagy are described, considering current evidence for each. Data available to date suggest that the greatest potential risks of geophagy include toxicity or heavy metal poisoning, and diseases resulting from consumed clays binding nutrients and beneficial pharmaceuticals in the gut. Evidence also suggests that geophagy may be beneficial by protecting against harmful pathogens and toxins through two distinct physiological pathways. Future research should explore causal relationships between geophagy and iron deficiency, as well as investigate the biological and psychosocial conditions that govern geophagy.
Compositional data for 464 clay minerals (2:1 type) were analyzed by statistical techniques. The objective was to understand the similarities and differences between the groups and subgroups and to evaluate statistically clay mineral classification in terms of chemical parameters. The statistical properties of the distributions of total layer charge (TLC), K, VIAl, VIMg, octahedral charge (OC) and tetrahedral charge (TC) were initially evaluated. Critical-difference (P = 1%) comparisons of individual characteristics show that all the clay micas (illite, glauconite and celadonite) differ significantly from all the smectites (montmorillonite, beidellite, nontronite and saponite) only in their TLC and K levels; they cannot be distinguished by their VIAl, VIMg, TC or OC values which reveal no significant differences between several minerals.
Linear discriminant analysis using equal prior was therefore performed to analyze the combined effect of all the chemical parameters. Using six parameters [TLC, K, VIAl, VIMg, TC and OC], eight minerals groups could be derived, corresponding to the three clay micas, four smectites (mentioned above) and vermiculite. The fit between predicted and experimental values was 88.1%. Discriminant analysis using two parameters (TLC and K) resulted in classification into three broad groups corresponding to the clay micas, smectites and vermiculites (87.7% fit). Further analysis using the remaining four parameters resulted in subgroup-level classification with an 85–95% fit between predicted and experimental results. The three analyses yielded D2 Mahalanobis distances, which quantify chemical similarities and differences between the broad groups, within members of a subgroup and also between the subgroups. Classification functions derived here can be used as an aid for classification of 2:1 minerals.
The alignment of phyllosilicates in clays has received a lot of attention because it is a major cause of seismic anisotropy in the Earth’s crust. Thus far, all attention has been on shales where the orientation pattern has been attributed to compaction and observed to increase with burial depth and diagenetic processes. Here, for the first time, the same methods that were developed to quantify shale preferred orientation were applied to clays forming in surface environments, a seasonal streambed in Death Valley, California; a mudpool from mud volcanoes in Imperial Valley, California, close to the Salton Sea; and a glacial lake from Val Albigna in the Swiss Alps. Preferred orientation was analyzed quantitatively with high-energy synchrotron X-ray diffraction. All three samples showed strong alignment of phyllosilicates with (001) pole figure maxima 2–4 multiples of a random distribution, comparable to shales, and indicating that significant preferred orientation can be produced at surface conditions. The original alignment during sedimentation may be an important factor for the final microstructure in many shales.
Late Miocene clayey sediments were deposited in lake-margin and shallow-lake environments of the southeastern Central Anatolian Volcanic Province (CAVP). Yellow to red mudstone, alternating with thin beds of conglomerate and sandstone in the Mustafapaşa Formation, is overlain by altered white Cemilköy ignimbrite. Grain size fines upward in each sequence (conglomerate, sandstone, and mudstone). The occurrence of reddish coloration upward, ripple marks, desiccation cracks, plant rootlets and remnants, and the development of initial-stage paleosols in association with smectite reveal that the area underwent alternating periods of siliciclastic and volcaniclastic sediment supply (wet) and drying. Micromorphologically, the development of spongy smectite in mudstone of the Mustafapaşa Formation and vermiform kaolinite in the Cemilköy ignimbrite on resorbed detrital feldspar and devitrified glass reveals in situ precipitation driven by dissolution and precipitation mechanisms. In addition, alteration of these sediments may have resulted in the depletion of soluble alkaline elements, such as Ca, Na, and K, from the ignimbrite downward into the Mustafapaşa Formation. Alternatively, the leaching of these elements — due to the hydrologically open system of the lake environment — may have resulted in the enhancement of Al+Fe/Si-favored precipitation of kaolinite in an acidic environmental condition, namely, of the altered Cemilköy ignimbrite at the top of the profile of the Mustafapaşa Formation, and of smectite in an alkaline setting within lower-level sediments where carbonate minerals were lacking. The coexistence of smectite with accessory illite indicates that illitization occurred via release of K and Al during excess desorption of feldspar. Large Ni and Co values in mudstone samples, and Fe oxidized and partly chloritized pyroxene and hornblende, indicate that the basin was also affected by ophiolite-related supply.
Chemically modified bentonites are being developed with the aim of preserving low hydraulic conductivity in the presence of potentially aggressive permeants in pollutant-containment applications. ‘Multiswellable’ bentonite (MSB) has been obtained by treating standard sodium bentonite with propylene carbonate. Research on the engineering properties of MSB has focused mainly on permeability and chemical compatibility. Solute diffusion and membrane behavior in MSB have not yet been investigated. A combined chemico-osmotic/diffusion test was performed on a MSB specimen using a 5 mM CaCl2 solution. Permeability with distilled water and with the 5 mM CaCl2 solution was measured prior to and after the chemico-osmotic/diffusion tests. The material exhibited time-dependent membrane behavior with a peak osmotic efficiency value (ω) of 0.172 that gradually shifted to zero upon breakthrough of calcium ions. Effective diffusion coefficients of calcium and chloride ions were in the range commonly described for untreated bentonite at similar porosities. After the chemico-osmotic/diffusion stage and permeation with 5 mM CaCl2, the hydraulic conductivity of MSB increased from 1.1 × 10−11 m/s to 7.0 × 10−11 m/s. The MSB was apparently converted into a calcium-exchanged bentonite at the end of the test. Prehydration and subsequent permeation might have contributed to elution of the organic additive from the clay. Further investigation is recommended to clarify the effect of prehydration on the hydraulic performance of MSB in the presence of potentially aggressive permeants.
The combination of zero-valent iron (ZVI) and a clay-type amendment is often observed to have a synergistic effect on the rate of reduction reactions. In the present study, electrochemical techniques were used to determine the mechanism of interaction between the iron (Fe) and smectite clay minerals. Iron electrodes coated with an evaporated smectite suspension (clay-modified iron electrodes, CMIEs) were prepared using five different smectites: SAz-1, SWa-1, STx-1, SWy-1, and SHCa-1. All the smectites were exchanged with Na+ and one sample of SWy-1 was also exchanged with Mg2+. Potentiodynamic polarization scans and cyclic voltammograms were taken using the CMIEs and uncoated but passivated Fe electrodes. These electrochemical experiments, along with measurements of the amount of Fe2+ and Fe3+ sorbed in the smectite coating, suggested that the smectite removed the passive layer of the underlying Fe electrode during the evaporation process. Cyclic voltammograms taken after the CMIEs were biased at the active-passive transition potential for varying amounts of time suggested that the smectite limited growth of a passive layer, preventing passivation. These results are attributed to the Brønsted acidity of the smectite as well as to its ability to sorb Fe cations. Oxides that did form on the surface of the Fe in the presence of the smectite when it was biased anodically were reduced at a different electrochemical potential from those that form on the surface of an uncoated Fe electrode under otherwise similar conditions; this difference suggested that the smectite reacted with the Fe2+ formed from the oxidation of the underlying Fe. No significant correlation could be found between the ability of the smectite to remove the Fe passive film and the smectite type. The results have implications for the mixing of sediments and Fe particles in permeable reactive barriers, underground storage of radioactive waste in steel canisters, and the use of smectite supports in preventing aggregation of nano-sized zero-valent iron.
Clays of a soil sequence with five profiles in the Val Genova (northern Italy) along an elevation gradient with climate ranging from moderate to Alpine were investigated with XRD using several diagnostic treatments. Smectites developed in the surface horizons of podzolic soils either from chlorite through the removal of hydroxy interlayers or from mica, which weathers in a first step to regularly or irregularly interstratified clay minerals. Citrate treatment allowed the detection of low-charge expandable minerals in the Bhs or Bs horizons. Therefore, the reduction of the charge of 2:1 clay minerals occurred before the removal of hydroxy polymers by fulvic acids and low-weight organic acids. Due to the more intense podzolization process near the tree line, the d060 region showed a temporal evolution of trioctahedral to dioctahedral mineral structures in the well developed Podzols. The pedogenic smectites of the E or Bhs horizons generally included one or several populations with various charges. In most cases, smectite was a heterogeneous mixture of montmorillonite and interstratified beidellite-montmorillonite. A pure beidellite phase could not be detected. The soils near the tree line, where weathering processes were most intense, had two main components: one with a charge >0.75, representing vermiculite-like minerals, and the other with a charge near 0.25, representing smectite. The charges of the beidellitic component and montmorillonite were almost equal. The higher the weathering state of the investigated soils, the lower was the layer charge of smectites.
Iron-pillared clays (Fe-PILCs) were synthesized from hydrolyzed FeCl3 solutions added to NaOH solutions using different synthesis conditions. X-ray diffraction, N2 adsorption-desorption, chemical analysis, thermogravimetric analysis, differential thermal analysis, temperature-programmed desorption of ammonia and temperature-programmed reduction were used to characterize the resulting Fe-pillared clays (Fe-PILCs). A higher degree of pillaring was obtained when the Fe content was adjusted to 60 mmoles of Fe/g of clay. It was observed that higher values of this ratio led to worse acidity and textural characteristics, a consequence of the probable formation of Fe oxides that could not only deposit on the surface but also block the pores formed during the pillaring process. Likewise, it was found that the amount of Fe that can be introduced depended on the OH/Fe ratios. Total surface and micropore area decreased and Fe content increased with increasing pillaring solution concentrations. Finally, all pillared samples prepared here were thermally stable at temperatures up to 400°C.
The coarse, non-clay fraction of many flint-like kaolinitic claystones often contains mineral grains diagnostic of the claystone's origin and, in the case of tonsteins (altered volcanic ashes), may also provide minerals suitable for radiometric dating. Separation of the non-clay mineral fraction is often difficult because flint clays and flint-like clays resist slaking in water and thus are difficult to disaggregate. Chemical disaggregation of resistant kaolinitic claystones may be achieved by immersion in either hydrazine monohydrate or DMSO for periods ranging from one day to several weeks. Generally, hydrazine monohydrate works more quickly and efficiently than DMSO to disaggregate most kaolinitic claystones and flint clays.
The direct application of heavy metal- and quaternary ammonium-based antibacterial agents can cause inconvenience such as irritation, short-term applicability, discoloration of the tissue, and environmental concerns. The immobilization of these agents on montmorillonite (Mnt) was expected to diminish these effects by hindering direct contact of the ions with the target tissues. The objective of the present study was, therefore, to prepare inorgano(I)- and organo(O)-montmorillonites (I/O-Mnt) and to determine their potential uses in such biomedical applications. Na-montmorillonite (Mnt-Na) was modified by hydrothermal and microwave irradiation methods using Cu2+/Zn2+, and quaternary ammonium and/or anionic surfactants. The effect of the structures formed by immobilization on Mnt surfaces on antibacterial activity was investigated. Quaternary ammonium surfactants were cetyltrimethyl ammonium bromide (CTAB) with a linear alkyl chain, cetylpyridinium chloride (CPC) with a single aromatic ring, and benzethonium chloride (BZT) with double aromatic rings. N-lauroyl sarcosinate (SR) was the anionic surfactant. The samples were subjected to thermogravimetric (TGA) and scanning electron microscopy (SEM) analyses. Desorption tests showed that the antibacterial efficacy against Streptococcus mutans stemmed from I/O-Mnt and not from the ions released from the material surfaces to the aqueous phase. The results of the antibacterial studies showed that the existence of a linear alkyl chain and a double aromatic ring were the structural factors causing the greatest antibacterial effect. The time-kill tests revealed that Mnt-CTA, Mnt-BZT, and Mnt-CP-SR were effective against Streptococcus mutans within 5 min of contact. With the new findings, they were identified as possible selective and potent bactericidal agents and promising candidates for biomedical applications.
Halloysite is used for targeted delivery of drugs and other biomolecules. Renewed interest in examination by X-ray diffraction (XRD) to predict the size of particles that can be loaded onto the nanotubes has resulted. Anhydrous halloysite consists of spiraled tubules the length and diameter of which can be determined by measurement using an electron microscope. In spite of ample evidence regarding the spiral structure of halloysite, current programs to evaluate the structure of halloysite nanotubes consider it to be a hollow tube or a cylinder which prevents accurate prediction of its structure and leads to misinformation about the sizes of materials that can be loaded onto the nanotubes. The overall objective of the current study was to derive equations to estimate the structure of halloysite nanotubes which take into consideration its spiral structure. The study of Fourier transform either by electron diffraction or XRD led to the measurement of the spiral thickness and the nature of the spiral. Calculations of the nanotube dimensions may determine the ability of these carriers to allow the mechanical delivery of certain drugs. Here the structure of hydrated halloysite (hollow cylindrical tubes with a doughnut-like cross-section) and anhydrous halloysite (spiraled or helical structure) are described as previously reported in the literature. The Fourier transform of the spiraled structure was selected based on three different kinds of spirals: the Archimedean spiral, the Power spiral, and the Logarithmic spiral. Programs used to define the crystal structure of materials and to calculate the Fourier transform need to take the spiral structure into consideration.
Single-crystal X-ray diffraction experiments were carried out on roscoelite crystals from Reppia, Val Graveglia, Italy. Roscoelite [structural formula: XII(Ba0.006K0.994)IV(Si3.150Al0.850) VI(Al0.040Fe0.150Mg0.100Mn0.062V1.696Ti0.003)O10(OH)2] shows a near-perfect three-dimensional stacking order with cell parameters a = 5.292(1), b = 9.131(2), c = 10.206(3) Å, β = 100.98(2)° and space group C2/m, which indicate a 1M polytype. The crystal structure was refined on the basis of Fo2 for 846 unique reflections to R1 = 3.29% calculated using 746 unique observed reflections [|Fo| ⩾ 4σ(Fo)]. The mean tetrahedral cation–oxygen atom distance, <T−O> = 1.641 Å, is close to the mean <T−O> value obtained for dioctahedral true micas from the literature, whereas the octahedral sheet is characterized by a larger cis-octahedral cation–oxygen atom bond distance <M2−O> = 2.020 Å which, together with the mean electron count, is consistent with V occupancy. The presence of V within the octahedral sheet produces the smallest tetrahedral rotation (α = 2.3°), the lowest flattening of the basal oxygen surface (Δz = 0.118 Å) and the narrowest interlayer separation (3.030 Å) in dioctahedral micas.
The objective of the present study was to determine the predominant minerals in sedimentary rocks using Fourier-transform infrared (FTIR) spectroscopy and chemometric analysis. The chemometric analysis was performed on three types of sedimentary rock samples (claystones, clay slates, and sandstones), each with different predominant mineral components. Chemometric models were created to determine the major minerals of the rock samples studied — chlorite, muscovite, albite, and quartz. The FTIR spectra were obtained in transmission mode from pressed pellets of KBr-sample mixtures or by diffuse reflectance from hand-packed mixtures of samples with KBr. Spectral regions measured were 4000-3000 and 1300–400 cm-1, which contained important spectral information for the creation of the chemometric models. Principal component analysis was used in the chemometric method, with calibration models being created by a partial least-squares regression method. The mean relative error, standard error of prediction, and relative standard deviation were calculated for the assessment of accuracy, precision, and reproducibility. The value of the mean relative error was 15–20% for most of the calibration models; the value of the standard error of prediction was up to 6 w/w % for most of the calibration models. The values of the standard relative deviation ranged from ~2 to 8% for calibration models based on diffuse reflectance spectra whereas calibration models based on transmission spectra had values of relative standard deviation of ~15-20%.
Tracing interactions during burial-induced organic maturation and associated clay-material alteration is of prime importance for understanding both the individual and combined mineral and organic processes. In the present study the light elements B, Li, O, and H of a sample from oil-prone Eocene Kreyenhagen Shale from San Joaquin Basin (California) were examined. The natural burial-induced temperature increase was simulated by pyrolysis experiments at progressively increasing temperatures (270–365°C) and for varied durations (72–216 h) applied to the whole rock and its <2 μm fraction. The illite structure as well as the K-rich interlayers of the illite-smectite mixed layers were not affected by the pyrolysis experiments and the smectite-rich interlayers did not collapse, while the soluble minerals and the organic matter were altered. The distribution pattern of the rare-earth elements (REEs) from untreated whole rock and of its pyrolyzed equivalents are within analytical uncertainty, which confirms that the changes induced by pyrolysis experiments were minimal in the bulk sample. Conversely, the REEs from the <2 μm fractions were modified significantly, suggesting that the whole rocks and the <2 μm fractions may contain different types of organic materials. Also, only the carbonates, oxides, chlorides, and organic matter were affected together with the smectite-rich interlayers of the illite-smectite structure. Bitumen coating of the smectite interlayers probably increased the amount of B of organic origin in their sites. The δ11B and δ7Li of the successively expelled hydrocarbon phases changed with increasing pyrolysis temperatures, together with the B and Li contents of the hydrocarbon-related fluids. On the basis of the δ11B and δ7Li from pyrolyzed clay fractions, the B released successively was not isotopically homogeneous, probably depending on how the type of organic matter decomposed during the successive pyrolysis steps, and on which components were released. The δ11B of organic-B increased progressively from –2‰ at low experimental temperature up to +9‰ at the highest temperature. The calculated δ7Li that was released also increased relative to the value of the outcropping sample used as a reference, but it remained almost constant from –7‰ at 310°C for 72 h to –8‰ at 365°C for 216 h. The δ18O values of the <2 μm size fractions decreased significantly during pyrolysis above 300°C, but the δD changes were rather modest. The total organic carbon (TOC) remained statistically constant after pyrolysis to 300°C, as did the δ7Li values. The pyrolysis experiments in the present study suggest the presence of bitumen-coated smectite interlayers that could have been misidentified as dehydrated smectite in the literature. Together with abnormal illite K-Ar ages, the occurrence of such bitumen-coated illite-smectite interlayers occurring in source and reservoir rocks could indicate the timing of hydrocarbon maturation relative to illitization.
A rhamnolipid-layered double hydroxide (RL-LDH) nanocomposite, derived from the rhamnolipid (RL) biosurfactant, was synthesized through a delamination/reassembling process. The adsorption characteristics of Cu(II) on RL-LDH were investigated in detail and the results indicated the potential of using RL-LDH as an environmentally friendly adsorbent to remove Cu(II). The fabricated RL-LDH nanocomposite was characterized using powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elemental chemical composition, and specific surface area analyses. Batch adsorption experiments were conducted to study the influence of various factors, such as contact time, initial Cu(II) concentration, temperature, initial solution pH, and electrolyte concentration on Cu(II) adsorption by the RL-LDH nanocomposite. The RL-LDH nanocomposite had a low surface area of 11.71 m2 g−1, which suggests that surface adsorption would not be important in Cu(II) adsorption. The Cu(II) adsorption data fitted the Freundlich model well at pH 5.5, whereas the adsorption kinetics were accurately described by a pseudo-second-order kinetics model. Chemical binding, that is, the formation of a RL-Cu(II) complex in the LDH interlayer, was assumed to be the rate-limiting step in the adsorption process. Thermodynamic parameters that included Gibbs free energy, enthalpy, and entropy changes were also calculated. The adsorption was found to be a spontaneous and exothermic chemisorption process. Furthermore, the adsorption properties of RL-LDH for Cu(II) were compared to Cu(II) adsorption using other adsorbents.
Clays are abundant materials in the Amazon region and have been used historically by ancient Amazonian people to produce ceramic and cosmetics products. The current study aimed to evaluate the potential of four clays from the metropolitan area of Manaus, each with a different color, for cosmetics applications. Two clays were collected in the Ponta Negra region (red and gray in color) in Manaus, one in Careiro (white), and one in Itacoatiara (black). After drying in an oven for 24 h at 105°C, the four clays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetry (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle-size analysis, and detection of microorganisms. The amounts of Al, Si, Cl, K, Ca, Ti, Cr, Fe, Zn, P, and S in all samples were below the limits for use in cosmetics. The main phases identified were kaolinite 1A, quartz, gibbsite, and the rare kaolinite 2M. Approximately 40 wt.% of each sample was in the < 20 μm particle-size range. Analyses by SEM revealed pseudo-hexagonal kaolinite structures with nano-islands and nanocrystallites. The low toxicity, mineralogic compositions, and particle-size findings suggest that Amazonian clays are promising for cosmetics applications.