To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Eight atmospheric carbon dioxide samples (as calcium carbonate—CaCO3—precipitates) from Lindesnes site (58ºN, 7ºE), belonging to 1963 and 1980 (four samples from each year) and stored at the National Laboratory for Age Determination (NTNU), have been reevaluated through radiocarbon (14C) analysis. Previous 14C results indicated the presence of a contaminant, which was not removed through different chemical cleansing procedures (e.g., hydrochloric acid—HCl and/or hydrogen peroxide—H2O2). Here, we present a follow up investigation using 14C step-combustion and Fourier-transform infrared spectroscopy (FTIR) analysis. Results from 14C data indicate unsuccessful removal of the contaminant, while further FTIR analysis displayed the presence of moisture. This finding alludes to the possibility that the contaminant is of ambient air-CO2 deeply embedded in CaCO3 powders (within clogged CaCO3 pores and/or bonded to the lattice). Samples were found exposed to air-CO2 and humidity. These conditions may have lasted for years, possibly even decades, leading to the 14C offsets detected here.
Recently, a non-local eddy diffusivity model for the turbulent scalar flux was proposed to improve the local model and was validated using direct numerical simulation (DNS) of homogeneous isotropic turbulence with an inhomogeneous mean scalar (Hamba, J. Fluid Mech., vol. 950, 2022, A38). The non-local eddy diffusivity was assumed to be proportional to the two-point velocity correlation that was expressed in terms of the energy spectrum. Because the Fourier transform of velocity in the homogeneous directions was used to define the energy spectrum, it is not yet understood whether the proposed model can be applied to inhomogeneous turbulence. Thus, this study aimed to improve the non-local model using the scale-space energy density instead of the energy spectrum. First, the scale-space energy density based on filtered velocities was examined using the DNS data of homogeneous isotropic turbulence to obtain its simple form corresponding to the Kolmogorov energy spectrum. Subsequently, the two-point velocity correlation was expressed in terms of the scale-space energy density. Using these expressions, a new non-local eddy diffusivity model was proposed and validated using the DNS data. The one-dimensional non-local eddy diffusivity obtained from the new model agrees with the DNS value. The temporal behaviour of the three-dimensional non-local eddy diffusivity was improved compared with the previous model. Because the scale-space energy density was already examined in turbulent channel flow, it is expected that the new non-local model can also be applied to inhomogeneous turbulence and is useful for gaining insight into turbulent scalar transport.
Individuals with physical disabilities experience distress when faced with the threat of human-made and natural disasters, yet little is known about how to reduce that distress. This study used Protection Motivation Theory to longitudinally test the relationships between psychological distress and disaster-related cognitive appraisals, including perceived threat, emergency preparedness self-efficacy, and response efficacy, in a sample of individuals with physical disabilities.
Methods:
A nationwide convenience sample of 106 adults completed 2 surveys approximately 5 years apart. Structural equation modeling was used to assess effects of perceived threat, self-efficacy, and response efficacy on psychological distress across the 2 waves.
Results:
Our results suggest that the associations of proximal perceived threat and self-efficacy with psychological distress remain stable across time, while the effect of response efficacy is variable and may be more context-specific. Importantly, individuals who reported an increase in self-efficacy over time also reported (on average) a decrease in psychological distress.
Conclusions:
In addition to broadening our understanding of factors related to psychological distress, these results have potentially important intervention implications; for example, to the extent that self-efficacy is a malleable construct, one way of reducing disaster-related psychological distress may be to increase an individual’s self-efficacy.
The sustainable funding of tertiary education is a subject of significant policy debate worldwide. In South Africa, the need to balance equitable access within a constrained fiscal environment has been a complex challenge. A legacy of racially segregated educational opportunities, together with student activism and protests, has shaped the political economy surrounding tertiary education funding. Policymakers continue to be faced with the challenge of funding students whose household income is too high to meet state financial aid eligibility, yet who struggle to afford tuition and accommodation expenses. In this context, exploring a policy instrument that differentiates students based on multidimensional socioeconomic need is critical. We motivate for a differentiated policy instrument that considers economic uncertainty of households as a dimension of socioeconomic need. A purpose of our paper is therefore to illustrate that income mobility can contribute to household vulnerability, and therefore to funding need. Household income mobility is estimated using a multivariate probit model that explicitly accounts for endogeneity of initial conditions, unobserved heterogeneity, and non-random panel attrition. We operationalise this model as a relevant empirical tool for analysing and understanding the implementation, expansion, and targeting of social policy more generally.
Our health system implemented a novel clinical decision-support system to reduce unnecessary duplicate nasal methicillin-resistant Staphylococcus aureus (MRSA) polymerase chain reaction (PCR) orders. In an 8-month period, the rate of duplicate MRSA PCR orders within 7 days declined from 4.7% (370 of 7,861) to 1.2% (120 of 9,833).
While simultaneous radiocarbon and δ13C measurements have been available for organic materials (by accelerator mass spectrometry, AMS, and isotope ratio mass spectrometry, IRMS, respectively), this has not been possible for carbonates until now. Using an existing interface for gas ion source AMS measurements, we developed a prototype for a universal gas interface that allows simultaneous measurement of both carbon isotope ratios from potentially any source of CO2. First results obtained from reference materials (IAEA-C6, OxaII, PhA, IAEA-C1, IAEA-C2, ETH-4) show that for both organic as well as carbonate samples, the precision of radiocarbon measurements in the coupled mode is comparable to routine standalone AMS measurements. For IRMS δ13C measurements, the performance for different materials shows more variation with precisions ranging from 0.07‰ to 0.47‰. However, both organic materials and carbonates can achieve precisions as good as 0.13‰. Once fully automated, the method shows potential for filling the gap of simultaneous carbon isotope measurements for non-organic materials.
El estudio de la Misión Salesiana (siglos diecinueve y veinte) contribuye al conocimiento del impacto que las misiones religiosas tuvieron en América. Los registros históricos sugieren un cambio en la dieta, hacinamiento y alta frecuencia de enfermedades pulmonares infecciosas, como la tuberculosis. Muchos problemas de salud surgen de desequilibrios dietarios. La insuficiencia nutricional crónica hace que los individuos sean más susceptibles a las enfermedades infecciosas, y esto a su vez reduce la disponibilidad de nutrientes para la persona, creando una retroalimentación positiva. El objetivo de este trabajo es explorar el impacto que tuvo el contacto continuo en Patagonia Austral —específicamente en el caso de la Misión Salesiana— sobre la población originaria, a partir del análisis de marcadores metabólico-nutricionales e infecciosos y teniendo en cuenta el estado nutricional y estilo de vida de los individuos que allí habitaron. Para evaluar el cambio se compararon los resultados de los individuos de la misión con información previamente publicada y nuevas revelaciones de individuos del norte de la Isla Grande de Tierra del Fuego. Por un lado, se observó una elevada prevalencia de signos patológicos tales como hiperostosis porótica, cribra orbitalia, hipoplasia del esmalte y caries; por otro, fuentes documentales y estudios de isótopos estables indican un cambio en la dieta que conlleva una reducción en la variedad de alimentos. Los cambios producidos en el estilo de vida y la alta frecuencia de enfermedades infecciosas pudieron actuar sinérgicamente, influyendo en la drástica reducción del número de personas que habitaba dentro de la misión.
This article argues that the Post-Traumatic Growth (PTG) literature does not support the claim, made most notably by Eleonore Stump, that suffering tends to promote psychic integration that allows for interpersonal closeness with God (or others). Two strains of argument support this conclusion. First, there are problems internal to PTG research, identified by psychologists and bioethicists in the field, that call the strength and reliability of the findings into question. Second, even if successful in what it purports to do, the PTG literature does not support the conclusions that Stump draws from it. Finally, given that we live in a culture that both prizes and moralizes positivity, often at the expense of sufferers, applying this research in prescriptive and normative ways inappropriately circumscribes the post-traumatic journeys of trauma survivors. Before turning to these arguments, I begin by briefly describing the long-term suffering that trauma can inflict in the forms of post-traumatic stress disorder and other physical and mental health effects. This section illustrates the challenge that trauma poses for the projects of theodicy and defence and provides the backdrop against which the PTG literature must be read.
While existing scholarship recognizes the centrality of social organizations for party-building efforts, how network structures condition party-building remains underexamined. This article argues that a core property of the network environments within which proto-parties emerge—structural resilience—shapes opportunities for proto-parties’ expansion and consolidation. More resilient network structures—those with multiple pathways available for expansion—decrease proto-parties’ vulnerability to structural threats and allow them to circumvent competition. To evaluate this theory, I examine the organizational networks of three comparable indigenous party-building efforts in Bolivia. Using original network data and a mixed-methods approach, I demonstrate that MAS-IPSP succeeded in establishing itself as the indigenous party because of the structural resilience of the network environment within which it originated. By contrast, its counterparts failed when targeted network attacks undermined their access to organizational spaces critical to their expansion strategies. The findings reveal often-overlooked variation in the relationship between social organizations and political parties.
We define $\Psi $-autoreducible sets given an autoreduction procedure $\Psi $. Then, we show that for any $\Psi $, a measurable class of $\Psi $-autoreducible sets has measure zero. Using this, we show that classes of cototal, uniformly introenumerable, introenumerable, and hyper-cototal enumeration degrees all have measure zero.
By analyzing the arithmetical complexity of the classes of cototal sets and cototal enumeration degrees, we show that weakly 2-random sets cannot be cototal and weakly 3-random sets cannot be of cototal enumeration degree. Then, we see that this result is optimal by showing that there exists a 1-random cototal set and a 2-random set of cototal enumeration degree. For uniformly introenumerable degrees and introenumerable degrees, we utilize $\Psi $-autoreducibility again to show the optimal result that no weakly 3-random sets can have introenumerable enumeration degree. We also show that no 1-random set can be introenumerable.
The effect of a uniform mean scalar gradient on the small scales of a passive scalar field in statistically stationary homogeneous isotropic turbulence is investigated through the transport equation for the scalar fluctuation. After some manipulation of the equation, it is shown that the effect can be recast in the form $S_\theta ^* {{Pe^{-1}_{\lambda _\theta }}}$ ($S_\theta ^*$ is the non-dimensional scalar gradient, ${{Pe_{\lambda _\theta }}}$ is the turbulent Péclet number). This effect gradually disappears as ${{Pe_{\lambda _\theta }}}$ becomes sufficiently large, implying a gradual approach towards local isotropy of the passive scalar. It is further argued that, for a given $S_\theta ^*$, the normalized odd moments of the scalar derivative tend towards isotropy as ${{Pe^{-1}_{\lambda _\theta }}}$. This is supported by direct numerical simulations data for the normalized odd moments of the scalar derivative at large Péclet numbers. Further, the present derivation leads to the same prediction (${\sim }Sc^{-0.45}$ where Sc is the Schmidt number) as Buaria et al. (Phys. Rev. Lett., vol. 126, no. 3, 2021a, p. 034504) and complements the derivation by the latter authors, which is based on dimensional arguments and the introduction of a new diffusive length scale.
Markus Barth (1915–1994) is best-known for his pioneering work in Jewish-Christian dialogue, and his Anchor Bible commentaries. Convinced that Ephesians 2:14–16 is the core of Paul's gospel, Barth concluded that the ‘one new man’ in Christ not only necessitates an indissoluble solidarity between Christians and Jews, but entails that all enmities have been negated by Christ's reconciliatory work. Ironically, this conviction provoked in him an antagonism towards many of his Jewish interlocutors. Their refusal to ‘forget Auschwitz’ caused Barth to accuse them of not being sufficiently conciliatory, and in turn led him, with sadly supersessionistic logic, to eschew reconciliation with them, because he did not think they took reconciliation seriously enough.
Solute–surface interactions have garnered considerable interest in recent years as a novel control mechanism for driving unique fluid dynamics and particle transport with potential applications in fields such as biomedicine, the development of microfluidic devices and enhanced oil recovery. In this study, we will discuss dispersion induced by the diffusioosmotic motion near a charged wall in the presence of a solute concentration gradient. Here, we introduce a plug of salt with a Gaussian distribution at the centre of a channel with no background flow. As the solute diffuses, the concentration gradient drives a diffusioosmotic slip flow at the walls, which results in a recirculating flow in the channel; this, in turn, drives an advective flux of the solute concentration. This effect leads to cross-stream diffusion of the solute, altering the effective diffusivity of the solute as it diffuses along the channel. We derive theoretical predictions for the solute dynamics using a multiple-time-scale analysis to quantify the dispersion driven by the solute–surface interactions. Furthermore, we derive a cross-sectionally averaged concentration equation with an effective diffusivity analogous to that from Taylor dispersion. In addition, we use numerical simulations to validate our theoretical predictions.
To obtain scientific data regarding the chronology of archaeological structures, lime mortar radiocarbon dating has often demonstrated to be a decisive method. However, knowing the specific chemical-mineralogical characteristics of mortars can help when preparing samples or interpreting results. Among other issues, the dating of magnesian mortars can be particularly difficult because of the combined slaking, setting and hardening reactions of the calcium and magnesium phases, typical of these mortars. The formation of numerous mineralogical phases depending on reaction conditions adds further complexity to the dating method, which deserves to be studied with further detail. During the project “Mortar technology and construction history at Müstair Monastery” the first experiments in this regard had yielded encouraging results. An additional 4 samples from buildings with controversial chronology, thought to belong approximately to the 9th, 12th, and 15th centuries, were selected, prepared and radiocarbon dated. The data obtained were discussed by integrating preliminary petrographic characterization analyses of the mortars with archaeological information and excavation records. The results opened up new questions about the chronology of the Monastery, clarified the dating of some buildings and provided a better understanding of the potential and limitations of dating dolomitic mortars coming from archaeological context.
The demand for flexible grasping of various objects by robotic hands in the industry is rapidly growing. To address this, we propose a novel variable stiffness gripper (VSG). The VSG design is based on a parallel-guided beam structure inserted by a slider from one end, allowing stiffness variation by changing the length of the parallel beams participating in the system. This design enables continuous adjustment between high compliance and high stiffness of the gripper fingers, providing robustness through its mechanical structure. The linear analytical model of the deflection and stiffness of the parallel beam is derived, which is suitable for small and medium deflections. The contribution of each parameter of the parallel beam to the stiffness is analyzed and discussed. Also, a prototype of the VSG is developed, achieving a stiffness ratio of 70.9, which is highly competitive. Moreover, a vision-based force sensing method utilizing ArUco markers is proposed as a replacement for traditional force sensors. By this method, the VSG is capable of closed-loop control during the grasping process, ensuring efficiency and safety under a well-defined grasping strategy framework. Experimental tests are conducted to emphasize the importance and safety of stiffness variation. In addition, it shows the high performance of the VSG in adaptive grasping for asymmetric scenarios and its ability to flexible grasping for objects with various hardness and fragility. These findings provide new insights for future developments in the field of variable stiffness grippers.
Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focus on long-term dispersion behaviour and cannot capture the transient evolution of the solute zone across the spatial variations in the channel. In the current study, we analyse the Taylor–Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations, which allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases, including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.