To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study formulates a qualitative image-based approach to establishing cetacean sightings’ effort at an ecosystem scale in the Gulf of Maine. As a first step, I investigate a rare set of long-term sightings (2008–2017, the study period) of a male killer whale (Orcinus orca) representing unusually consistent occurrences, without considering observation effort. Largely unknown, killer whale populations in the NW Atlantic are tiny, travelling over vast areas, and at risk of human-caused extinction. The synthesis uses opportunistic observations, reported mainly by recreational mariners and commercial fishers incorporated into data manipulations anonymously. Adding an effort index using the qualitative image-based approach, I then investigate the hypothesis that the killer whale sightings constitute seasonal-spatial fidelity to the greater GoM, the first documentation of fidelity patterns in the western Atlantic hemisphere. The analysis includes comparisons to frequency distributions of single killer whales in the gulf in the historical past as a baseline, i.e. post mid 1940s. Finally, the fidelity analysis reveals a substantial spatial anomaly in the recent sightings data for the northeastern GoM. An explanation for the emergent anomaly is pursued by analyses of indicators of the availability of Atlantic herring (Clupea harengus) [fisheries landings, Atlantic puffin (Fratercula arctica) chick diets] as potential prey in the NE gulf. With the development of complementary corroborative approaches to the analysis of incidental sightings, it is possible to chip away at impediments to the understanding of ecosystem attractants and deterrents with respect to cetacean distributions.
We estimated the racial disparity in rates of invasive S. aureus infections based on community coronavirus disease 2019 (COVID-19) rates at the county level. Our data suggest that COVID-19 infection burden (1) affects not only hospital-onset MRSA invasive infection risk but also community-onset S. aureus invasive infection risk and (2) affects Black residents ∼60% more than White residents.
We studied the extent of carbapenemase-producing Enterobacteriaceae (CPE) sink contamination and transmission to patients in a nonoutbreak setting.
Methods:
During 2017–2019, 592 patient-room sinks were sampled in 34 departments. Patient weekly rectal swab CPE surveillance was universally performed. Repeated sink sampling was conducted in 9 departments. Isolates from patients and sinks were characterized using pulsed-field gel electrophoresis (PFGE), and pairs of high resemblance were sequenced by Oxford Nanopore and Illumina. Hybrid assembly was used to fully assemble plasmids, which are shared between paired isolates.
Results:
In total, 144 (24%) of 592 CPE-contaminated sinks were detected in 25 of 34 departments. Repeated sampling (n = 7,123) revealed that 52%–100% were contaminated at least once during the sampling period. Persistent contamination for >1 year by a dominant strain was common. During the study period, 318 patients acquired CPE. The most common species were Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. In 127 (40%) patients, a contaminated sink was the suspected source of CPE acquisition. For 20 cases with an identical sink-patient strain, temporal relation suggested sink-to-patient transmission. Hybrid assembly of specific sink-patient isolates revealed that shared plasmids were structurally identical, and SNP differences between shared pairs, along with signatures for potential recombination events, suggests recent sharing of the plasmids.
Conclusions:
CPE-contaminated sinks are an important source of transmission to patients. Although traditionally person-to-person transmission has been considered the main route of CPE transmission, these data suggest a change in paradigm that may influence strategies of preventing CPE dissemination.
Wind energy is a source of collision fatalities for birds and bats. To evaluate the risk that wind power development projects might pose to the conservation of protected species, it is essential to quantify the impact of collisions on the dynamics of wild populations. To address this challenge, two approaches are primarily employed: potential biological removal (PBR) and population projection analysis (PPA). PBR is a decision rule designed to calculate a sustainable fatality limit for a given population, whereas PPA relies on simulation-based modelling to forecast a population’s future trajectory under various scenarios. In the context of environmental impact assessments (EIAs), we argue that PPA offers a more suitable method than PBR for evaluating population-level impacts resulting from collisions with wind turbines. Unlike PBR, PPA can be focused on a single source of disturbance, aligning with the perspective of the EIA process. By contrast, PBR necessarily adopts a population-centred perspective and is therefore only relevant when considering all sources of mortality that jointly affect a population. Furthermore, robust utilization of the PBR approach requires the definition of quantitative conservation objectives and the implementation of a comprehensive management strategy evaluation, neither of which is ever undertaken within the context of an EIA.
Pension funds and insurers face difficulties in hedging their longevity risk, which is the uncertainty of how long their clients will live. A possible solution could be using longevity-linked securities to transfer some of this risk to other parties. However, these securities may not match the actual mortality rates of the insurer’s clients, resulting in a potential loss due to basis risk. In this paper, we measure this basis risk through the pricing of a longevity derivative under Solvency II. We also compare this method with other common pricing methods in finance. We explore and evaluate different hedging strategies for insurers, using a multi-population model derived from a two-dimensional Hull and White model that captures the dynamics of mortality over time.
Over 90% of children with CHD survive into adulthood and require lifelong cardiology care. Delays in care predispose patients to cardiac complications. We sought to determine the time interval to accessing adult CHD care beyond what was recommended by the referring paediatric cardiologist (excess time) and determine risk factors for prolonged excess time.
Materials and Methods:
Retrospective cohort study including all patients in the province of Alberta, Canada, age 16–18 years at their last paediatric cardiology visit, with moderate or complex lesions. Excess time between paediatric and adult care was defined as the interval (months) between the final paediatric visit and the first adult visit, minus the recommended interval between these appointments. Patients whose first adult CHD appointment occurred earlier than the recommended interval were assigned an excess time of zero.
Results:
We included 286 patients (66% male, mean age 17.6 years). Mean excess time was 7.9 ± 15.9 months. Twenty-nine (10%) had an excess time > 24 months. Not having a pacemaker (p = 0.03) and not needing cardiac medications at transfer (p = 0.02) were risk factors for excess time >3 months. Excess time was not influenced by CHD complexity.
Discussion:
The mean delay to first adult CHD appointment was almost 8 months longer than recommended by referring paediatric cardiologists. Not having a pacemaker and not needing cardiac medication(s) were risk factors for excess time > 3 months. Greater outpatient resources are required to accommodate the growing number of adult CHD survivors.
A 47-year-old with repaired ventricular septal defect and pulmonary valve stenosis as a child presents with chronic intermittent chest pain. CT evaluation for transcatheter pulmonary valve replacement revealed right coronary artery compression between a sternal wire and dilated right ventricle. Removal of the sternal wire resulted in improved symptoms.
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree-$2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-$2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
Wetlands act as islands of high biodiversity within the ecological landscape and provide crucial ecosystem services to society. Anthropogenic activities are driving wetland degradation and it has become increasingly rare to find wetlands that do not show signs of biodiversity loss or alteration. The exacerbated loss of biodiversity in wetlands has a negative impact on the local economy and ecosystem services provided by these systems. We responded to the South African National Biodiversity Assessment (NBA) call to document wetland biodiversity against the backdrop of sustained wetland degradation in southern Africa. We monitored the soundscape of a high-elevation wetland in the Golden Gate Highlands National Park (GGHNP) from June 2019 to December 2020 across 24 localities using a rolling grid layout. We detected 35.9% of the avian species previously recorded from ad hoc sightings in the GGHNP of which 68.1% are wetland obligate species. We contributed an additional 10.2% new species records to the avian diversity of the GGHNP, including 24 species that are considered threatened by the International Union for Conservation of Nature (IUCN). Our remote monitoring technique enabled the first ever continuous monitoring using remote acoustic equipment for a high-elevation wetland in South Africa, thus providing a valuable contribution to the NBA call.
where $f: X \to {\Bbb R}$, X a set, finite or infinite, and K and $\mu $ denote a suitable kernel and a measure, respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form
holds for all nonnegative real-valued functions $f_i$, $1\le i\le n$, on X. The basic question is, how does the structure of G and the mapping properties of the operator $T_K$ influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case $X={\Bbb F}_q^d$, the d-dimensional vector space over the field with q elements, $K(x^i,x^j)$ is the indicator function of the sphere evaluated at $x^i-x^j$, and connected graphs G with at most four vertices.
Why does an authoritarian regime adopt meritocracy in its political selection? I argue that meritocracy can be used to co-opt large numbers of ordinary citizens by providing them with an opportunity of socioeconomic advancement instead of income redistribution, as long as the selection process is viewed as inclusive and rule-based. Focusing on the civil service examination in contemporary China, I examine how this meritocratic selection has shaped the relationship between college graduates and the Chinese regime. Exploiting a spatial-cohort variation in applicant eligibility, I find that the exam boosts college graduates’ perceived upward mobility, which in turn weakens their demand for redistribution even in the face of growing inequality. These findings point to an alternative mode of authoritarian co-optation and highlight the role of upward mobility in regime stability.
Eukaryotic swimming cells such as spermatozoa, algae or protozoa use flagella or cilia to move in viscous fluids. The motion of their flexible appendages in the surrounding fluid induces propulsive forces that balance viscous drag on the cells and lead to a directed swimming motion. Here, we use our recently built database of cell motility (BOSO-Micro) to investigate the extent to which the shapes of eukaryotic swimming cells may be optimal from a hydrodynamic standpoint. We first examine the morphology of flexible flagella undergoing waving deformation and show that their amplitude-to-wavelength ratio is near that predicted theoretically to optimise the propulsive efficiency of active filaments. Next, we consider ciliates, for which locomotion is induced by the collective beating of short cilia covering their surface. We show that the aspect ratios of ciliates are close to that predicted to minimise the viscous drag of the cell body. Both results strongly suggest a key role played by hydrodynamic constraints, in particular viscous drag, in shaping eukaryotic swimming cells.
Successions in Oklahoma and Nevada record trilobite extinction and replacement near the Steptoean–Sunwaptan boundary in inner-shelf and outer-shelf settings, respectively. Prior to the extinctions, different trilobite biofacies occupied these environments, but faunas became similar in composition across the environmental gradient in the overlying I. “major” and Taenicephalus zones. Faunal changes in the outer shelf at the I. “major” Zone begin at a drowning unconformity that brought dark, laminated calcisiltite and silty lime mudstone above a subtidal carbonate succession. In contrast, Oklahoma shows facies continuity in a succession of tidally influenced bioclastic carbonates. Loss of genera and a dramatic abundance “spike” of Irvingella are features of the I. “major” Zone in both regions. Turnover of biofacies occurred in the succeeding Taenicephalus Zone, with both the inner and outer shelf dominated by Orygmaspis (Parabolinoides). Blooms of orthid brachiopods in shallow water settings are underappreciated signals of faunal change in the extinction interval. Although absent from the outer shelf in Nevada, orthids became abundant enough in Oklahoma to form shell beds in the lower Taenicephalus Zone, but became rare in overlying strata. Carbon isotope stratigraphy includes a modest positive δ13C excursion that peaks in the extinction interval at 1.4‰ (Oklahoma) and 2.2‰ (Nevada), which is congruent with previous reports from Utah and Wyoming. Although consistent with regional upwelling of dysoxic waters, the absence of sedimentary evidence for significant environmental change over much of the shelf is problematic. This suggests that physical environmental change acted primarily as a catalyst for cascading ecological and biogeographic effects.
We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.
A data-driven framework using snapshots of an uncontrolled flow is proposed to identify, and subsequently demonstrate, effective control strategies for different objectives in supersonic impinging jets. The open-loop, feed-forward control approach, based on a dynamic mode decomposition reduced-order model (DMD-ROM), computes forcing receptivity in an economical manner by projecting flow and actuator-specific forcing snapshots onto a reduced subspace and then evolving the dynamics forwards in time. Since it effectively determines a linear response around the unsteady flow in the time domain, the method differs materially from typical techniques that use steady basic states, such as stability or input–output approaches that employ linearized Navier–Stokes operators in the frequency domain. The method presented naturally accounts for factors inherent to the snapshot basis, including configuration complexity and flow parameters such as Reynolds number. Furthermore, gain metrics calculated in the reduced subspace facilitate rapid assessments of flow sensitivities to a wide range of forcing parameters, from which optimal actuator inputs may be selected and results confirmed in scale-resolved simulations or experiments. The DMD-ROM approach is demonstrated from two different perspectives. The first concerns asymptotic feedback resonance, where the effects of harmonic pressure forcing are estimated and verified with nonlinear simulations using a blowing–suction actuator. The second examines time-local behaviour within critical feedback events, where the phase of actuation becomes important. For this, a conditional space–time mode is used to identify the optimal forcing phase that minimizes convective instability growth within the resonance cycle.